

Prof. Dr. rer. nat. Frank Gauterin Institut für Fahrzeugsystemtechnik

Schwerpunkt

SP 12: Kraftfahrzeugtechnik

20.4.2020

INSTITUT FÜR FAHRZEUGSYSTEMTECHNIK, INSTITUTSTEIL FAHRZEUGTECHNIK

Übersicht zum SP 12 "Kraftfahrzeugtechnik"

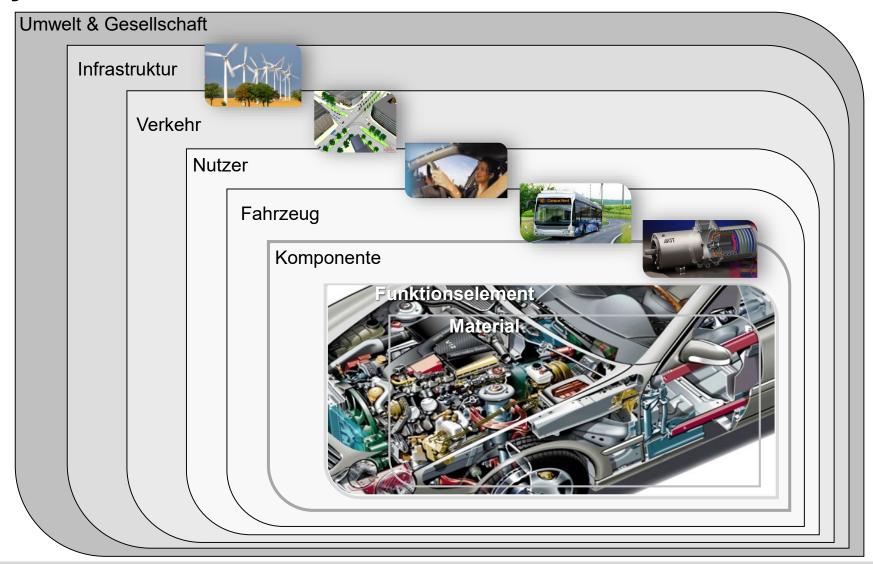
Worum geht es in dieser Präsentation?

- Themenfeld Kraftfahrzeugtechnik
- Berufliches Kraftfahrzeugtechnik
- Einbettung der SP 12 in das konsekutive Studium Maschinenbau

Themenfeld Kraftfahrzeugtechnik Mobilitätssysteme am KIT

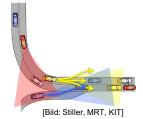
- Ca. 40 KIT-Institute forschen zu Mobilitätssystemen
- Ca. 800 Wissenschaftler eingebunden
- Interdisziplinäre Forschung
- Systemorientierte Forschungsansätze
- Über 100 Vorlesungen mit Bezug auf Fahrzeuge und Mobilität

Themenfeld Kraftfahrzeugtechnik Fahrzeuge als Teil des Mobilitätssystems



- Fahrzeuge dienen der Beförderung von Personen und Gütern.
- Sie lassen sich unterteilen nach ihrer Größe: bei kleinem Transportvolumen spricht man von Fahrzeugen des Individualverkehrs, z.B. Pkw, Fahrrad, Minishuttlebus, Van, bei großem Volumen von Fahrzeugen des Massentransports, z.B. Bahn, Tram oder U-Bahn, große Busse oder Schwerlastkraftwagen.
- Hinsichtlich Ihrer Zugänglichkeit im Verkehr werden Privatfahrzeuge (von Einzelpersonen und Unternehmen) und Fahrzeuge des öffentlichen Verkehrs (z.B. Bahn, Bus, Taxen) unterschieden.
- Weiterhin unterscheidet man Fahrzeuge aufgrund der Verkehrsträger in Straßen-, Schienen-, Wasser- und Luftfahrzeuge.
- Im Schwerpunkt SP 12 "Kraftfahrzeugtechnik" geht es um Straßenfahrzeuge mit Motorantrieb.
- Fahrzeuge sind als komplexe technische Systeme Bestandteil des gesamten sozio-technischen Mobilitätssystems (→ System of Systems) und haben vielfältige Wechselbeziehungen zu ihren Nutzern und Besitzern, zu Straßen-, Energie-, Daten- und Kommunikationsinfrastrukturen und zu ihrer Verkehrsumgebung und müssen persönlichen, gesellschaftlichen, ökonomischen und ökologischen Anforderungen gerecht werden.

Themenfeld Kraftfahrzeugtechnik Systemansatz



Trends in der Automobilbranche

Digitalisierung

Vernetzung

[Bild: TAF, FZI]

Elektrifizierung

[Bild: Doppelbauer, EIT, KIT]

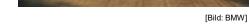
Sharing

[Bild: Navia]

Intelligente Materialien und Strukturen, Additive Fertigung

[Bild: Martin Müller/FAPS@FAU]

Themenfeld Kraftfahrzeugtechnik Straßenfahrzeuge



[Bild: imago images / Future Image / C. Hardt]

[Bild: www.studio-schell.com]

[Bild: Porsche]

[Bild: DHL]

[Bild: DLR] [Bild: Bild: Marijan Murat/dpa]

[Bild: Daimler]

[Bild: Daimler]

Übersicht zum SP 12 "Kraftfahrzeugtechnik"

Worum geht es in dieser Präsentation?

- Themenfeld Fahrdynamik, Fahrzeugkomfort und -akustik
- Berufliches Umfeld Kraftfahrzeugtechnik
- Einbettung der SP 12 in das konsekutive Studium Maschinenbau

Arbeitsmarkt Automobilindustrie

- Größter Wirtschaftszweig Deutschlands. Umsatz 435 Mrd. Euro (2019)
 = 23% des Gesamtumsatzes der deutschen Industrie.
- 5 Mio. Menschen rund um das Auto beschäftigt, = jeder 7. Arbeitsplatz
- In 2018 und 2019 833.000 Mitarbeiter, davon > 100.000 Ingenieure.
- 258.500 Mitarbeiter in Baden-Württemberg in der Fahrzeug-Industrie direkt tätig, 470.000 inklusive Maschinen- und Anlagenbau, Dienstleistung, Handel, Reparatur.
- Zehn der hundert weltweit größten Auto-Zulieferer haben ihren Hauptsitz in Baden-Württemberg oder sind mit Tochterunternehmen vertreten.

[Bild: Porsche]

Arbeitsmarkt Automobilindustrie

- Forschung und Entwicklung dt. Automobilindustrie in 2017 42,7 Mrd. Euro, d. h. > 1/3 der weltweiten F&E-Aufwendungen in diesem Segment (Platz 1 vor USA und Japan), entspricht 37% aller deutschen F&E-Aufwendungen.
- Die deutsche Automobilindustrie gehört zu den weltweit führenden Patentanmeldern: Platz 2 mit 15% (nach USA mit 25%), das sind 47% aller dt. Patentanmeldungen, die meisten kommen aus BW.
- Z. Z. beispielloser Innovationsprozess (Digitalisierung, Vernetzung, autonomes Fahren, Elektromobilität, Leichtbau, regenerative Energie, ...).
- Offene Ingenieurstellen Q4 2019: 113.000 (-10,4% gegenüber Q4 2018; arbeitssuchend 32 300, +10,2% gegenüber Q4 2018). Am häufigsten Informatik (40 000) gesucht, Maschinen- und Fahrzeugbau sowie Elektroingenieure (26.100), stärkster Bedarf in Baden-Württemberg (19.200, davon Maschinen- und Fahrzeugtechnik 2.100, -29% geg.üb. Q4 2018)

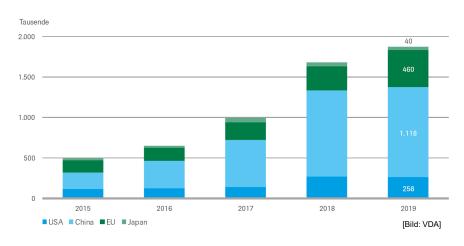
Quelle: VDI. März 2020

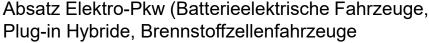
[Bild: BMW]

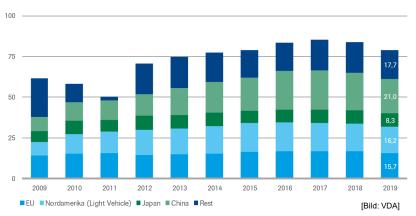
Internationalisierung der Automobilbranche

Weltmarktanteil deutscher Fahrzeuge im Premiumsegment 65%.

EU-Marktanteil deutscher Fahrzeuge ca. 37,3% (Neuwagen)


Weltmarktanteil deutscher Fahrzeuge ca. 15,5%.


Marktanteil der Premiumfahrzeuge deutscher Hersteller in China 78%. 71% aller Fahrzeuge deutscher Hersteller werden im Ausland produziert.


Quelle: diverse, Bezugsjahr 2019

Automobilwirtschaft

Weltweite Pkw-Produktion nach Regionen [Mio.]

Gründe für Rückgang Umsätze seit 2018:

- Rückläufiger Weltmarkt (2018 → 2019:
 -5 %)
- Handelskonflikt mit USA
- Dieselskandal
- Umrüstung der Werke auf E-Fahrzeuge
- Corona-Pandemie

75% der in Deutschland hergestellten Pkw werden exportiert.

Grund für Exporterfolg: hohe Qualität.

2/3 aller Pkw-Exporte sind Premium-Fahrzeuge (nach Europa 52%, nach Asien 92 %, nach USA 96 % Premiumfahrzeuge)

Berufsbild Kraftfahrzeugtechnik Beteiligte Disziplinen

Maschinenbau

Elektrotechnik

Chemie

Materialwissenschaft

Physik

Psychologie

Informatik

Jura

Mathematik

Wirtschaftswissenschaft

Berufsbild Kraftfahrzeugtechnik Anforderungen

Mobilität Fachwissen

Interdisziplinäres Wissen

Teamfähigkeit

Organisationstalent

Wandel aktiv gestalten Pragmatismus

Invention Innovation

Kommunikation

Tempo

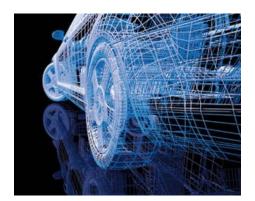
Weitsichtigkeit

Englisch

flexibles Denken und Handeln

Kostenbewusstsein

Berufsbild Kraftfahrzeugtechnik Tätigkeitsfelder



Technologieentwicklung

- Konzeptentwicklung
- Funktionsentwicklung
- Auslegung und Konstruktion
- Optimierung und Absicherung
- Produktion und Qualitätssicherung
- Methodenentwicklung
- Management, Einkauf, Vertrieb
- Mobilitätsdienste

Tätigkeitsbereiche

Konstruktion

Modellbildung & Simulation

Versuch & Validierung

Mensch-Fahrzeug-Interaktion

Darauf sind die Lehrveranstaltungen des Schwerpunkts ausgerichtet.

Berufsbild Kraftfahrzeugtechnik Arbeitgeber

Fahrzeughersteller: Pkw, Nfz, Mobile Arbeitsmaschinen, E-Bikes, .

Zulieferer: ca. 50% der Beschäftigten, ca. 75% der Wertschöpfung

Zulieferkette Tier 1, Tier 2, Tier 3, ...

Ingenieurdienstleister

Forschungsinstitute

Aus- und Weiterbildung

Mobilitätsdienstleister

Prüfinstitute

Patentwesen

Gutachter, Sachverständiger

Verbände und Vereinigungen

[Bild: Volkswagen]

[Bild: EBIKE-MTB]

Übersicht zum SP 12 "Kraftfahrzeugtechnik"

Worum geht es in dieser Präsentation?

- Themenfeld Fahrdynamik, Fahrzeugkomfort und -akustik
- Berufliches Umfeld Kraftfahrzeugtechnik
- Einbettung der SP 12 in das konsekutive Studium Maschinenbau

Übersicht zum SP 12 "Kraftfahrzeugtechnik"

- Einbettung des Schwerpunktes in das Gesamtkonzept Ihres Studiums.
- Abschluss der Studierendenausbildung am KIT ist in der Regel der Mastergrad.
- Die angebotenen Bachelor- und Masterstudiengänge sind ein Gesamtkonzept mit konsekutivem Curriculum.

SP im **Bachelor**studiengang Maschinenbau

Einbettung des Schwerpunktes

Studienordnung Bachelorstudiengang Maschinenbau:

Im dritten Studienjahr sind Modulteilprüfungen aus folgenden Modulen abzulegen:

- 1. Mess- und Regelungstechnik: im Umfang von 7 Leistungspunkten,
- 2. Strömungslehre: im Umfang von 8 Leistungspunkten,
- 3. Maschinen und Prozesse: im Umfang von 7 Leistungspunkten,
- 4. Wahlpflichtfach: im Umfang von 4 Leistungspunkten,
- 5. Schwerpunkt mit Kern- und Ergänzungsmodul: im Umfang von 12 Leistungspunkten.

SP im Bachelor studiengang Maschinenbau

14 Wahlpflichtfach	siehe Kapitel 2.1		5	sPr/ mPr	1,5- 3	5
15 Schwerpunkt	Schwerpunkt-Kern siehe Kapitel 6	SP- Verantwort- licher	8	mPr		8
	Schwerpunkt-Ergänzung siehe Kapitel 6	SP- Verantwort- licher	4	mPr		4

SP im **Bachelor**studiengang Maschinenbau

Im Schwerpunkt mindestens 12 LP, davon müssen mindestens 8 LP Kernmodulfächer (K) sein.

Ergänzungsfächer (E) in der Liste sind **Empfehlung**, andere Fächer, **auch aus anderen Fakultäten**, können mit Genehmigung des jeweiligen Schwerpunkt-Verantwortlichen gewählt werden.

Vertiefungsrichtungen im Masterstudium

Im <u>Masterstudiengang</u> stehen insgesamt **8 Vertiefungsrichtungen** zur Auswahl:

Vertiefungsrichtung	Abk.	Verantwortlicher
Alligemeiner Maschinenbau	MB	Furmans
Energie-und Umwelttechnik	E+U	Maas
Fahrzeugtechnik	FzgT	Gauterin
Mechatronik und Mikrosystemtechnik	M+M	Korvink
Produktentwicklung und Konstruktion	PEK	Albers
Produktionstechnik	PT	Schulze
Theoretischer Maschinenbau	ThM	Böhlke
Werkstoffe und Strukturen für Hochleistungssysteme	W+S	Heilmaier

SP im Masterstudiengang Maschinenbau

Einbettung des Schwerpunkts SP 12

Studienordnung Masterstudiengang Maschinenbau:

In den beiden Studienjahren sind die Modulteilprüfungen aus folgenden Modulen abzulegen:

- 1. Mathematische Methoden: im Umfang von 6 Leistungspunkten,
- 2. Produktentstehung: im Umfang von 13 Leistungspunkten,
- 3. Modellbildung und Simulation: im Umfang von 7 Leistungspunkten,
- 4. Fachpraktikum: im Umfang von 4 Leistungspunkten,
- 5. Wahlpflichtmodul Maschinenbau: im Umfang von 8 Leistungspunkten,
- 6. Fachübergreifendes Wahlfach Bereich Naturwissenschaften/Informatik/Elektrotechnik: im Umfang von 6 Leistungspunkten,
- 7. Fachübergreifendes Wahlfach Bereich Wirtschaft/Recht: im Umfang von 4 Leistungspunkten,
- 8. Schlüsselqualifikation: im Umfang von 2 Leistungspunkten,
- 9. Zwei Schwerpunkte, bestehend aus je einem Kern- und Ergänzungsmodul, wobei in jedem Schwerpunkt ein Umfang von insgesamt mindestens 16 Leistungspunkten absolviert wird

Wahlmöglichkeiten im SP 12 "Kraftfahrzeugtechnik"

- Für jeden Schwerpunkt werden mindestens 16 LP gewählt (Master).
- Davon müssen mindestens 8 LP Kernmodulfächer K sein.
- Die übrigen Leistungspunkte können aus dem Ergänzungsbereich (E) kommen.

SP im Masterstudiengang Maschinenbau

Wahl der Schwerpunkte

- Insgesamt existieren derzeit 46 Schwerpunkte ¹⁾, in der Vertiefungsrichtung "Fahrzeugtechnik" sind 34 Schwerpunkte wählbar.
- Innerhalb einer Vertiefungsrichtung sind zwei Schwerpunkte zu wählen.
- In einigen der Vertiefungsrichtungen ist die Wahl des ersten Masterschwerpunkts ist eingeschränkt, so dass einer der mit "p" gekennzeichneten Schwerpunkte zu wählen ist.
- Die Wahl des zweiten Masterschwerpunkts kann aus den mit "w" oder "p" gekennzeichneten Schwerpunkten erfolgen.
- In einem konsekutiven Master-Studium kann ein solcher p-Schwerpunkt durch einen w-Schwerpunkt ersetzt werden, wenn der p-Schwerpunkt bereits im Bachelorstudium gewählt wurde.

¹⁾ Die Nummerierung der Schwerpunkte reicht weiter, einzelne Schwerpunkte wurden jedoch gestrichen unter Beibehaltung der bisherigen Nummerierung.

SP im Masterstudium Maschinenbau (1/3)

Schwerpunkt	SP-Verant- wortlicher	SP- Nr.	МВ	E+U	FzgT	M+M	PEK	PT	ThM	W+S
Advanced Materials Modelling	Böhlke	56	w						w	w
Advanced Mechatronics	Mikut	1	w	w	w	р	w	w	w	
Angewandte Mechanik	Böhlke	30	w	w	w	w	w	w	р	w
Antriebssysteme	Albers	2	w		w		w	w		
Automatisierungstechnik	Mikut	4	w	w	w	р	w	w	w	
Bahnsystemtechnik	Gratzfeld	50	w		р	w	w			
Computational Mechanics	Proppe	6	w		w	w	w		р	
Entwicklung innovativer Geräte	Matthiesen	51	w	w	w		р	w		
Entwicklung und Konstruktion	Albers	10	w	w	w		w	w		
Fahrdynamik, Fahrzeugkomfort und -akustik	Gauterin	11	w		w	w	w		w	
Fusionstechnologie	Stieglitz	53	w	w					w	
Gebäudeenergietechnik	HM. Henning	55	w	w						
Grundlagen der Energietechnik	Bauer	15	w	р	w	w	w			
Informationstechnik	Stiller	18	w	w	w	w	w	w	w	
Informationstechnik für Logistiksysteme	Furmans	19	w				w	w		
Innovation und Entrepreneurship	Class	59		w						
Integrierte Produktentwicklung	Albers	20	w	w	w		р	w		

SP im Masterstudium Maschinenbau (2/3)

Schwerpunkt	SP-Verant- wortlicher	SP- Nr.	мв	E+U	FzgT	M+M	PEK	PT	ThM	W+S
Kerntechnik	Cheng	21	w	w					w	
Koanitive Technische Systeme	Stiller	22	w		w	w	w	w	w	
Kraftfahrzeugtechnik	Gauterin	12	w		р		w			
Kraft- und Arbeitsmaschinen	Th. Koch	24	w	w	w		w			
Kraftwerkstechnik	Bauer	23	w	w			w			
Leichtbau	F. Henning	25	w	w	w		w	w		w
Lifecycle Engineering	Ovtcharova	28	w		w	w	р	р		
Logistik und Materialflusslehre	Furmans	29	w				w	р		
Materialwissenschaft und Werkstofftechnik	Heilmaier	26	w	w	w	w	w	w	w	р
Mechatronik	Hagen- meyer	31	w	w	w	р	w	w	w	
Medizintechnik	Pylatiuk	32	w			w	w			
Mensch - Technik - Organisation	Deml	3	w	w			w	р		
Mikroaktoren und Mikrosensoren	Kohl	54	w	w	w	w	w	w		
Mikrosystemtechnik	Korvink	33	w	w	w	р	w	w		
Mobile Arbeitsmaschinen	Geimer	34	w		р	w	w	w		
Modellbildung und Simulation in der Dynamik	Seemann	61	w	w	w	w	w	w	р	
Modellierung und Simulation in der Energie- und Strömungs- technik	Maas	27	w	w	w	w	w			
Polymerengineering	Elsner	36	w	w	w		w	w		w
Produktionstechnik	Schulze	39	w		w		w	р		

SP im Masterstudium Maschinenbau (3/3)

Schwerpunkt	SP-Verant- wortlicher	SP- Nr.	МВ	E+U	FzgT	M+M	PEK	PT	ThM	W+S
Robotik	Mikut	40	w			р	w	w	w	
Schwingungslehre	Fidlin	60	w	w	w	w	w	w	р	
Strömungsmechanik	Frohnapfel	41	w	w	w		w		р	
Technische Keramik und Pulverwerkstoffe	Hoffmann	43	w	w	w		w			w
Technische Logistik	Furmans	44	w				w	w		
Technische Thermodynamik	Maas	45	w	w	w	w	w		w	w
Thermische Turbomaschinen	Bauer	46	w	w	w				w	w
Tribologie	Dienwiebel	47	w	w	w	w	w	w	w	w
Verbrennungsmotorische Antriebssysteme	Th. Koch	58	w	w	р	w	w			
Zuverlässigkeit im Maschinenbau	Gumbsch	49	w	w	w	w	w	w	w	р

Übersicht zum SP 12 "Kraftfahrzeugtechnik" Veranstaltungen (1/3)

Wahlpflichtblock: Kraftfahrzeugtechnik (K) (mind. 8 LP)							
T-MACH-100092	Grundlagen der Fahrzeugtechnik I	8 LP	Gauterin, Unrau				
Wahlpflichtblock: H	(raftfahrzeugtechnik (E) (max. 8 LP)						
T-MACH-105655	Alternative Antriebe für Automobile	4 LP	Noreikat				
T-MACH-105233	Antriebssystemtechnik A: Fahrzeugantriebstechnik	4 LP	Albers, Matthiesen, Ott				
T-MACH-105536	Auslegung und Optimierung von Fahrzeuggetrieben	4 LP	Albers, Faust, Kirchner, Matthiesen				
T-MACH-108844	Automatisierte Produktionsanlagen	8 LP	Fleischer				
T-MACH-105226	Dynamik des Kfz-Antriebsstrangs	5 LP	Fidlin				
T-MACH-105152	Fahreigenschaften von Kraftfahrzeugen I	4 LP	Unrau				
T-MACH-105153	Fahreigenschaften von Kraftfahrzeugen II	4 LP	Unrau				
T-MACH-108374	Fahrzeugergonomie	4 LP	Heine				
T-MACH-105154	Fahrzeugkomfort und -akustik I	4 LP	Gauterin				
T-MACH-105155	Fahrzeugkomfort und -akustik II	4 LP	Gauterin				
T-MACH-105237	Fahrzeugleichtbau - Strategien, Konzepte, Werkstoffe	4 LP	Henning				
T-MACH-105156	Fahrzeugmechatronik I	4 LP	Ammon				
T-MACH-102207	Fahrzeugreifen- und Räderentwicklung für PKW	4 LP	Leister				
T-MACH-105218	Fahrzeugsehen	6 LP	Lauer, Stiller				
T-MACH-105535	Faserverstärkte Kunststoffe - Polymere, Fasern, Halbzeuge, Verarbeitung	4 LP	Henning				
T-MACH-102117	Grundlagen der Fahrzeugtechnik II	4 LP	Gauterin, Unrau				
T-MACH-105044	Grundlagen der katalytischen Abgasnachbehandlung bei Verbrennungsmotoren	4 LP	Deutschmann, Grunwaldt, Kubach, Lox				

Übersicht zum SP 12 "Kraftfahrzeugtechnik" Veranstaltungen (2/3)

T-MACH-102116	Grundlagen zur Konstruktion von Kraftfahrzeugaufbauten I	2 LP	Bardehle
T-MACH-102119	Grundlagen zur Konstruktion von Kraftfahrzeugaufbauten II	2 LP	Bardehle
T-MACH-105160	Grundsätze der Nutzfahrzeugentwicklung I	2 LP	Zürn
T-MACH-105161	Grundsätze der Nutzfahrzeugentwicklung II	2 LP	Zürn
T-MACH-105162	Grundsätze der PKW-Entwicklung I	2 LP	Frech
T-MACH-105163	Grundsätze der PKW-Entwicklung II	2 LP	Frech
T-ETIT-100784	Hybride und elektrische Fahrzeuge	4 LP	Becker
T-MACH-105375	Industrieaerodynamik	4 LP	Breitling, Frohnapfel
T-MACH-105188	Integrative Strategien und deren Umsetzung in Produktion und Entwicklung von Sportwagen	4 LP	Schlichtenmayer
T-MACH-105221	Konstruktiver Leichtbau	4 LP	Albers, Burkardt
T-MACH-105164	Lasereinsatz im Automobilbau	4 LP	Schneider
T-MACH-105442	Patente und Patentstrategien in innovativen Unternehmen	4 LP	Albers, Matthiesen, Zacharias
T-MACH-102155	Produkt-, Prozess- und Ressourcenintegration in der Fahrzeugentstehung	4 LP	Mbang
T-MACH-102156	Project Workshop: Automotive Engineering	6 LP	Frey, Gauterin, Gießler
T-MACH-105441	Projektierung und Entwicklung ölhydraulischer Antriebssysteme	4 LP	Ays, Geerling

Übersicht zum SP 12 "Kraftfahrzeugtechnik" Veranstaltungen (3/3)

T-MACH-105347	Projektmanagement in globalen Produktentwicklungsstrukturen	4 LP	Albers, Gutzmer, Matthiesen
T-MACH-105350	Rechnergestützte Fahrzeugdynamik	4 LP	Proppe
T-MACH-105696	Strategische Potenzialfindung zur Entwicklung innovativer Produkte	3 LP	Albers, Matthiesen, Siebe
T-MACH-105358	Sustainable Product Engineering	4 LP	Albers, Matthiesen, Ziegahn
T-MACH-102194	Verbrennungsmotoren I	4 LP	Koch, Kubach
T-MACH-105367	Verhaltensgenerierung für Fahrzeuge	4 LP	Stiller, Werling
T-MACH-102148	Verzahntechnik	4 LP	Klaiber
T-MACH-108844	Automatisierte Produktionsanlagen	8 LP	Fleischer
T-MACH-110318	Produkt- und Produktionskonzepte für moderne Automobile	4 LP	Kienzle, Steegmüller
T-MACH-110396	Strategische Potenzialfindung zur Entwicklung innovativer Produkte - Case Study	1 LP	Albers, Matthiesen, Siebe
T-MACH-110796	Python Algorithmus für Fahrzeugtechnik	4 LP	Rhode

Grundlagen der Fahrzeugtechnik I

(Kernfach 8 LP, 4 SWS im WS)

[Bild: Porsche]

Inhalt

- Historie und Zukunft des Automobils
- 2. Fahrmechanik: Fahrwiderstände und Fahrleistungen, Mechanik der Längs- und Querkräfte, aktive und passive Sicherheit, Fahrerassistenzsysteme
- 3. Antriebssysteme: Verbrennungsmotor, hybride und elektrische Antriebssysteme
- Kennungswandler: Kupplungen (z.B. Reibungskupplung, Viskokupplung), Getriebe (z.B. mechanische Schaltgetriebe, Strömungsgetriebe)
- 5. Leistungsübertragung und -verteilung: Wellen, Wellengelenke, Differentiale

Lernziele

Die Studierenden kennen die Bewegungen und die Kräfte am Fahrzeug und sind vertraut mit aktiver und passiver Sicherheit. Sie haben Kenntnisse über die Wirkungsweise von Motoren und alternativen Antrieben, über die notwendige Kennungswandlung zwischen Motor und Antriebsrädern sowie über die Leistungsübertragung und -verteilung. Sie kennen die für den Antrieb notwendigen Bauteile und beherrschen die Grundlagen, um das komplexe System "Fahrzeug" analysieren, beurteilen und weiterentwickeln zu können.

Alternative Antriebe für Automobile

(Ergänzungsfach 4 LP, 2 SWS im WS)

Inhalt

- Geschichte
- Infrastruktur
- Marktsituation
- Gesetzgebung
- Alternative Kraftstoffe
- Innovative Antriebe
- Hybridantriebe
- Plug-In Hybride
- BEV
- Brennstoffzelle
- Gemeinsame Komponenten

Ziele

Der Studierende kann alternative Antriebssysteme und Kraftstoffe benennen und beschreiben. Er kann die Wechselwirkungen der Systeme unter sich und mit Alternative Kraftstoffen erklären.

Antriebssystemtechnik A (Ergänzungsfach 4 LP, 2 SWS im SS) (1/2)

1. System Antriebsstrang

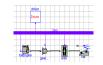
3. System Umgebung

4. Systemkomponenten

Kupplung

Getriebe

5. Entwicklungsprozess



real

virtuell

Die Vorlesung vermittelt systembezogen Kompetenzen, die ein zukünftiger Fahrzeugentwickler zum Design energieeffizienter und gleichzeitig komfortabel fahrbarer Antriebssystemlösungen benötigt.

Antriebssystemtechnik A

(Ergänzungsfach 4 LP, 2 SWS im SS) (2/2)

Kurzbeschreibung

- Antriebstechnologien für Fahrzeuge sind von besonderer Bedeutung zum langfristigen Erhalt der Individualmobilität. Die Vorlesung vermittelt systembezogen Kompetenzen, die ein zukünftiger Fahrzeugentwickler zum Design energieeffizienter und gleichzeitig komfortabel fahrbarer Antriebssystemlösungen benötigt. Hierbei stehen neben dem eigentlichen Antriebsstrang, die wechselwirkenden Systeme Fahrer und Umgebung im Fokus der Vorlesung.
- Durch die Vermittlung von praxisrelevanten Testverfahren werden den Studierenden Fähigkeiten zur Bewertung von Antriebslösungen im System Fahrzeug an die Hang gegeben.
- Die Vorlesung wird durch einen eintägigen Praxisworkshop mit einem hochrangigen Vertreter aus der Fahrzeugindustrie ergänzt.

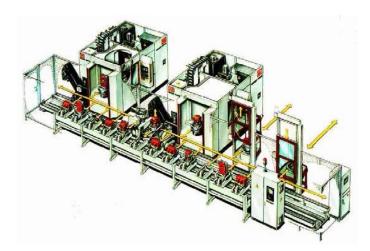
Auslegung und Optimierung von Fahrzeuggetrieben

(Ergänzungsfach 4 LP, 2 SWS im SS)

Inhalte

- Getriebetypen: Handschalt- (MT) & automatisierte Schaltgetriebe (AMT), Planeten-Wandler-Automaten (AT), Doppelkupplungs- (DCT), stufenlose (CVT) und geared neutral Getriebe (IVT), Hybridgetriebe (Serielle, parallele, Multimode-, Powersplit-Hybride), E-Achsen
- Drehschwingungsdämpfer: Gedämpfte Kupplungsscheibe, Zweimassenschwungrad, Fliehkraftpendel (FKP), Lock-Up-Dämpfer für Drehmomentwandler
- Anfahrelemente: Trockene Einfachkupplung, trockene und nasslaufende Doppelkupplung, hydrodynamischer Drehmomentwandler, Sonderformen, e-motorisch
- Kraftübertragung: Vorgelege-Getriebe, Planetensatz, CVT-Variator, Kette, Synchronisierung, Schaltund Klauenkupplungen, Reversierung, Differenziale und Sperrsysteme, koaxiale und achsparallele E-Achsantriebe
- Getriebesteuerung: Schaltsysteme für MT, Aktuatoren für Kupplungen und Schaltung, hydraulische Steuerung, elektronische Steuerung, Softwareapplikation, Komfort und Sportlichkeit
- Sonderbauformen: Triebstränge von Nutzfahrzeugen, Hydrostat mit Leistungsverzweigung, Torque Vectoring
- E-Mobilität: Einteilung in 5 Ausbaustufen der Elektrifizierung, 4 Hybrid-Konfigurationen, 7 Parallelhybrid-Architekturen, Hybridisierte Getriebe (P2, P2.5, P3, P4), Dedicated Hybrid Transmissions (DHT; seriell/parallel/Multimode, Powersplit, neue Konzepte), Getriebe für Elektrofahrzeuge (E-Achsgetriebe, koaxial und achsparallel

Automatisierte Produktionsanlagen


(Ergänzungsfach 8 LP, 6 SWS im SS)

Inhalt

- Antriebs- und Steuerungstechnik
- Handhabungstechnik zur Handhabung von Werkstücken und Werkzeugen
- Industrierobotertechnik
- Qualitätssicherung in automatisierten Produktionsanlagen
- Automaten, Zellen, Zentren und Systeme zur Fertigung und Montage
- Strukturen von Mehrmaschinensystemen
- Projektierung von automatisierten Produktionsanlagen

Lernziele

- Kenntnisse über Automatisierungsaufgaben in Produktionsanlagen erlangen
- Lernen welche Komponenten wie zusammengeschaltet werden müssen um Automatisierungsaufgaben umzusetzen

Dynamik des Kfz_ Antriebsstrangs

(Ergänzungsfach 5 LP, 2 SWS im SS)

Inhalt

- Hauptkomponenten eines KFZ-Antriebsstrangs und ihre Modelle
- Typische Fahrmanöver
- Problembezogene Modelle für einzelne Fahrsituationen
- Gesamtsystem: Betrachtung und Optimierung vom Antriebsstrang in Bezug auf dynamisches Verhalten

Fahreigenschaften von Kraftfahrzeugen I + II

Teil I (Ergänzungsfach 4LP, 2 SWS im WS)

- 1. Problemstellung
 - Regelkreis Fahrer Fahrzeug Umgebung
- 2. Simulationsmodelle
 - Erstellung von Bewegungsgleichungen
 - Modell für Fahreigenschaften
- 3. Reifenverhalten:
 - Trockene Fahrbahn
 - Nasse Fahrbahn
 - Winterglatte Fahrbahn

[Bild: Porsche]

Teil II (Ergänzungsfach 4 LP, 2 SWS im SS)

- 4. Fahrverhalten
 - Fahrmanöver: stationäre Kreisfahrt, Lenkwinkelsprung, Einzelsinus ...
 - Seitenwindverhalten: stationärer und instationärer Seitenwind
 - Unebene Fahrbahn
- 5. Stabilitätsverhalten

Fahrzeugergonomie

(Ergänzungsfach 4 LP, 2 SWS im SS)

Inhalt

- Grundlagen der physikalisch-körperbezogenen Ergonomie
- Grundlagen der kognitiven Ergonomie
- Theorien des Fahrerverhaltens
- Schnittstellengestaltung
- Usability-Testing

Ziele

Ein ergonomisches Fahrzeug ist bestmöglich auf die Anforderungen, Bedürfnisse und Eigenschaften seiner Nutzer angepasst und ermöglicht dadurch ein effektives, effizientes und zufriedenstellendes Interagieren. Nach dem Besuch der Vorlesung sind die Studierenden in der Lage, die ergonomische Qualität von verschiedenen Fahrzeugkonzepten zu analysieren und zu bewerten sowie Gestaltungsempfehlungen abzuleiten. Dabei können sie sowohl Aspekte der physikalischkörperbezogenen als auch der kognitiven Ergonomie berücksichtigen. Die Studierenden sind mit grundlegenden ergonomischen Methoden, Theorien und Konzepten sowie mit Theorien der menschlichen Informationsverarbeitung, speziell des Fahrerverhaltens, vertraut. Sie sind in der Lage, dieses Wissen kritisch zu diskutieren und im Rahmen des nutzerorientierten Gestaltungsprozesses flexibel anzuwenden.

Fahrzeugkomfort und -akustik I + II (1/2)

Ziel

Das Schwingungsverhalten von Kfz verstehen. Technische Lösungen und methodisches Vorgehen zur Analyse, Gestaltung und Verbesserung von Geräusch- und Schwingungsphänomenen am Kraftfahrzeug kennen und verstehen.

Teil I (Ergänzungsfach 4 LP, 2 SWS im WS)

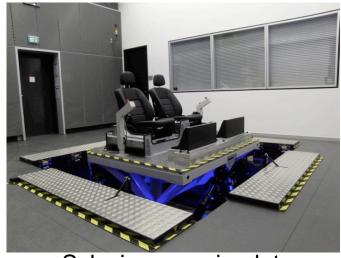
- 1. Schwingungs- und Geräuschwahrnehmung
- 2. Grundlagen Schwingungen und Akustik
- 3. Mess- und Analyseverfahren für Schwingungen und Geräusche
- 4. Phänomene, Ursachen, Lösungen, Zielkonflikte des Rollgeräuschs

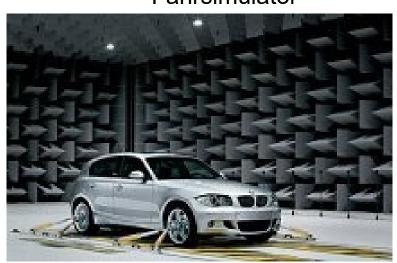
Teil II (Ergänzungsfach 4 LP, 2 SWS im SS)

- 1. Zusammenfassung Grundlagen Schwingungen und Geräusche
- 2. Phänomene, Ursachen, Lösungen, Zielkonflikte
 - Fahrbahn- / Reifen- / Fahrwerkssystem
 - Brems- und Lenksystem
 - Antriebssystem

[Bild: Porsche]

Fahrzeugkomfort und –akustik II (2/2) Exkursion




Fahrsimulator

Fahrsimulator

Schwingungssimulator

Akustikprüfstand

Fahrzeugleichtbau

Karlsruher Institut für Technologie

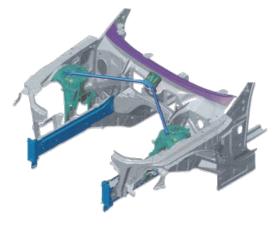
(Ergänzungsfach 4 LP, 2 SWS im WS)

Einführung in die Thematik des automobilen Leichtbaus. Kennenlernen der gängigen Leichtbaustrategien und –bauweisen sowie der verwendbaren Leichtbauwerkstoffe

Inhalte

Leichtbaustrategien und –bauweisen

- Stoff-, Form-, Konzeptleichtbau, Multi-Material-Design
- Differential-, Integral-, Modulbauweise, Bionik



Stahl, Aluminium, Magnesium, Titan

Grundlagen der Kunststoffe

- Thermoplaste, Duromere, Elastomere
- Mechanisches Verhalten, Versagensmechanismen
- Verarbeitungsverfahren

Quelle: BMW AG. ATZ. 2003

Fahrzeugmechatronik

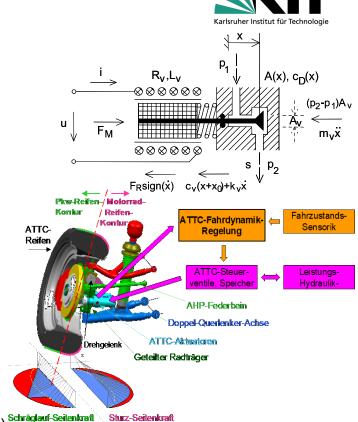
(Ergänzungsfach 4 LP, 2 SWS im WS)

0. Einführung: Mechatronik in der Fahrzeugtechnik

1. Fahrzeugregelungssysteme

- 1.1 Brems- und Traktionsregelungen (ABS, ASR, autom. Sperren)
- 1.2 Aktive und semiaktive Federungssysteme, aktive Stabilisatoren
- 1.3 Fahrdynamik-Regelungen, Assistenzsysteme

2. Modellbildung


- 2.1 Mechanik Mehrkörperdynamik
- 2.2 Elektrik/Elektronik, Regelungen
- 2.3 Hydraulik
- 2.4 Verbundsysteme

3. Simulationstechnik

- 3.1 Integrationsverfahren
- 3.2 Qualität (Verifikation, Betriebsbereich, Genauigkeit, Performance)
- 3.3 Simulator-Kopplungen (Hardware-in-the-loop, Software-in-the-loop)

4. Systemdesign (am Beispiel einer Bremsregelung)

- 4.1 Anforderungen (Funktion, Sicherheit, Robustheit)
- 4.2 Problemkonstitution (Analyse Modellierung Modellreduktion)
- 4.3 Lösungsansätze
- 4.4 Bewertung (Qualität, Effizienz, Gültigkeitsbereich, Machbarkeit)

Vergleich verschiedener ABS-Konzepte

bar
100
60
60
Schlupfregler
konvent. ABS

Fahrzeugreifen und Räderentwicklung für Pkw

(Ergänzungsfach 4 LP, 2 SWS im SS)

- Der Reifen
- Geometrie und Tragfähigkeit
- Reifenlastenheft
- Mobilitätsstrategie
- Projektmanagement
- Reifenprüfungen
- Kräfte und Momente
- Geräusche und Schwingungen
- Reifendruck
- Reifenbeurteilung
- Simulation
- Zusammenarbeit OEM Reifenhersteller
- Entwicklungsprozesse
- Zusammenhänge Reifen und Fahrwerk

Günter Leister

Fahrzeugreifen und Fahrwerkentwicklung

Strategie, Methoden, Tools

Fahrzeugsehen

(Ergänzungsfach 6 LP, 2 SWS im SS)

Einführung in die Techniken zur Umgebungswahrnehmung für autonome Fahrzeuge und Fahrerassistenzfunktionen

Vorlesungsthemen

- Sensoren für mobile Systeme
- Stereosehen
- Bewegungsbestimmung
- Fahrzeuglokalisierung
- Kartengenerierung
- Detektion von Fahrspuren und Verkehrsteilnehmern

Faserverstärkte Kunststoffe – Polymere, Fasern, Halbzeuge, Verarbeitung

(Ergänzungsfach 4 LP, 2 SWS im SS)

Ziel

Vermittlung grundlegender Kenntnisse aus dem spannenden Gebiet des Leichtbaus mit Faserverbundwerkstoffen (FVW)

Inhalte

- Grundlagen Polymere und Fasern
- Faserverbundwerkstoffhalbzeuge
- Verarbeitung, Nachbearbeitung und Fügen von FVW
- Gestaltungsrichtlinien für FVW

Grundlagen der Fahrzeugtechnik II

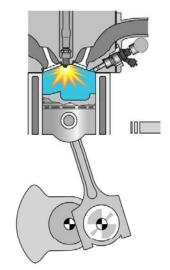
(Ergänzungsfach 4 LP, 2 SWS im SS)

Inhalt

- Fahrwerk: Radaufhängungen (Hinterachsen, Vorderachsen, Achskinematik), Reifen, Federn, Dämpfer
- 2. Lenkung: Manuelle Lenkungen, Servo-Lenkanlagen, Steer by Wire
- 3. Bremsen: Scheibenbremse, Trommelbremse, Vergleich der Bauarten

Lernziele

Die Studierenden haben einen Überblick über die Baugruppen, die für die Spurhaltung eines Kraftfahrzeugs und die Kraftübertragung zwischen Fahrzeugaufbau und Fahrbahn notwendig sind. Sie haben gute Kenntnisse in den Themengebieten Radaufhängungen, Reifen, Lenkung und Bremsen. Sie kennen unterschiedliche Ausführungsformen, deren Funktion und deren Einfluss auf das Fahrbzw. Bremsverhalten. Sie haben die Voraussetzung, die entsprechenden Komponenten richtig auszulegen und weiterzuentwickeln. Sie sind in der Lage, das komplexe Zusammenspiel der einzelnen Baugruppen analysieren, beurteilen und unter Berücksichtigung der Randbedingungen optimieren zu können.


Grundlagen der katalytischen Abgasnachbehandlung bei Verbrennungsmotoren

(Ergänzungsfach 4 LP, 3 SWS im WS)

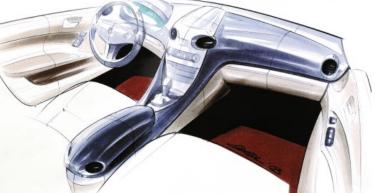
Inhalt:

- Einleitung, Historie, Konzepte
- Funktionsweise und Thermodynamik
- Charakteristische Kenngrößen
- Luftpfad
- Kraftstoffpfad
- Energieumsetzung
- Brennstoffe
- Emissionen
- Abgasnachbehandlung

Grundlagen zur Konstruktion von Kraftfahrzeugaufbauten I

(Ergänzungsfach 2 LP, 1 SWS im WS)

- Historie
- Design
- Aerodynamik
- Konstruktionstechnik CAD/CAM
- Konstruktionstechnik FE (Finite Elemente) Methode
- Herstellverfahren von Aufbauteilen
- Verbindungstechniken
- Rohbau / Rohbaufertigung
- Karosserieoberflächen


Grundlagen zur Konstruktion von Kraftfahrzeugaufbauten II

(Ergänzungsfach 2 LP, 1 SWS im SS)

- Karosserieeigenschaften und Prüfverfahren
- Äußere Karosseriebauteile
- Innenraum-Anbauteile
- Fahrzeug Klimatisierung
- Elektrische Anlagen / Elektronik
- Aufpralluntersuchungen
- Ausblick und Aspekte Projektmanagement

Grundsätze der Nutzfahrzeugentwicklung I + II (Ergänzungsfach 2 LP, 1 SWS im WS + 2 LP, 1 SWS im SS)

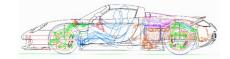
Wintersemester

- 1 Einführung, Definitionen, Historik
- 2 Entwicklungswerkzeuge
- 3 Gesamtfahrzeug
- 4 Fahrerhaus, Rohbau
- 5 Fahrerhaus, Innenausbau
- 6 Alternative Antriebe
- 7 Antriebsstrang
- 8 Antriebsquelle Dieselmotor
- 9 Ladeluftgekühlte Dieselmotoren

Sommersemester

- 10 Nfz Getriebe
- 11 Triebstrangzwischenelemente
- 12 Achssysteme
- 13 Vorderachsen und Fahrdynamik
- 14 Rahmen und Achsaufhängung
- 15 Bremsanlage
- 16 Elektrik / Elektronik

"Ziel der Vorlesung ist es, dem Hörer einen vollständigen Überblick über die Technik von schweren Lkw's zu geben."


Grundsätze der Pkw-Entwicklung I (Ergänzungsfach 2 LP, 1 SWS im WS)

Vorlesung 1: Prozess der PKW-Entwicklung

Vorlesung 2: Konzeptionelle Auslegung und Gestaltung eines PKW

Vorlesung 3: Gesetze und Vorschriften - Nationale und internationale Randbedingungen

Vorlesung 4: Aerodynamische Auslegung und Gestaltung eines PKW I

Vorlesung 5: Aerodynamische Auslegung und Gestaltung eines PKW II

Vorlesung 6: Thermomanagement im Spannungsfeld von Styling, Aerodynamıkund Packagvorgaben I

Vorlesung 7: Thermomanagement im Spannungsfeld von Styling, Aerodynamik- und Packagvorgaben II

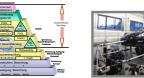
Grundsätze der Pkw-Entwicklung II

(Ergänzungsfach 2 LP, 1 SWS im SS)

Vorlesung 1: Anwendungsorientierte Werkstoff- und Fertigungstechnik I

Vorlesung 2: Anwendungsorientierte Werkstoff- und Fertigungstechnik II

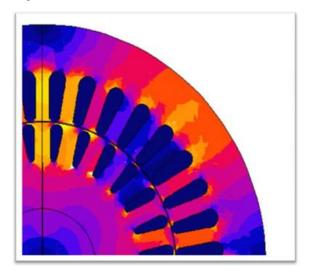
Vorlesung 3: Gesamtfahrzeugakustik in der PKW-Entwicklung


Vorlesung 4: Antriebsakustik in der PKW-Entwicklung

Vorlesung 5: Gesamtfahrzeugerprobung

Vorlesung 6: Gesamtfahrzeugeigenschaften

Hybride und elektrische Fahrzeuge


(Ergänzungsfach 4 LP, 2 SWS + Übung 1 SWS im WS)

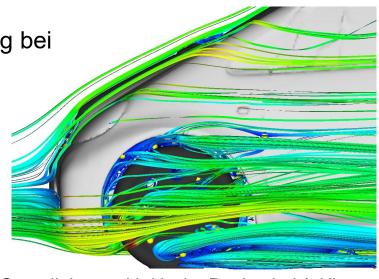
Ziel

Die Vermittlung von Hintergrundwissen zum Antriebsstrang von hybriden und batterieelektrischen Fahrzeugen, Kennen und Verstehen der wichtigsten technischen Lösungen.

Inhalt

- Individualverkehr und seine Auswirkungen auf die Umwelt
- Energiebedarf des Fahrzeugs
- Hybridkonzepte und Topologien
- Auslegung des Antriebsstrangs
- Antriebsstrangmanagement
- Komponenten: Getriebe, Asynchronmaschine, PM-Synchronmaschine, Sondermaschinen, Energiespeicher, Leistungselektronik
- Laden
- Fahrzeugbeispiele und Energiebilanzen

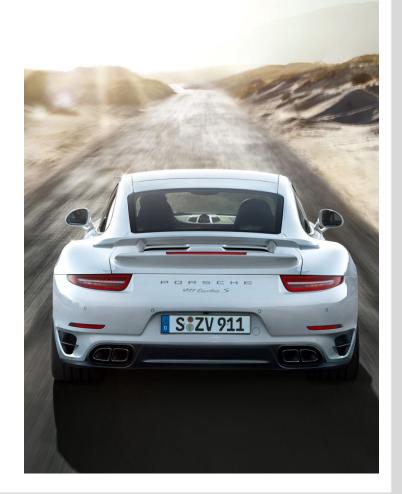
Industrieaerodynamik


(Ergänzungsfach 4 LP, 2 SWS im WS)

- 1 Der Fahrzeugentwicklungsprozess
- 2 Industriell eingesetzte Strömungsmesstechnik
- 3 Strömungssimulation in der Industrie
- 4 Kühlung
- 5 Strömung, Gemischbildung und Verbrennung bei direkteinspritzenden Dieselmotoren
- 6 Strömung, Gemischbildung und Verbrennung bei Ottomotoren
- 7 Fahrzeugumströmung
- 8 Klimatisierung/Thermischer Komfort

704grd KW (16 grd vor ZOT)

Stromlinien und kritische Punkte bei A-Klasse


Integrative Strategien und deren Umsetzung in Produktion und Entwicklung von Sportwagen (ISS) (1/2)

(Ergänzungsfach 4 LP, 2 SWS im SS)

Ziel

Zusammenhänge zwischen
Produktentwicklungsprozessen und
Produktionssystemen am Beispiel von
Sportwagen kennen und verstehen.
Herausforderungen globaler Märkte auf
Produktion und Entwicklung von exportfähigen
Premium-Produkten werden diskutiert.

Integrative Strategien und deren Umsetzung in Produktion und Entwicklung von Sportwagen (ISS) (2/2)

(Ergänzungsfach 4 LP, 2 SWS im SS)

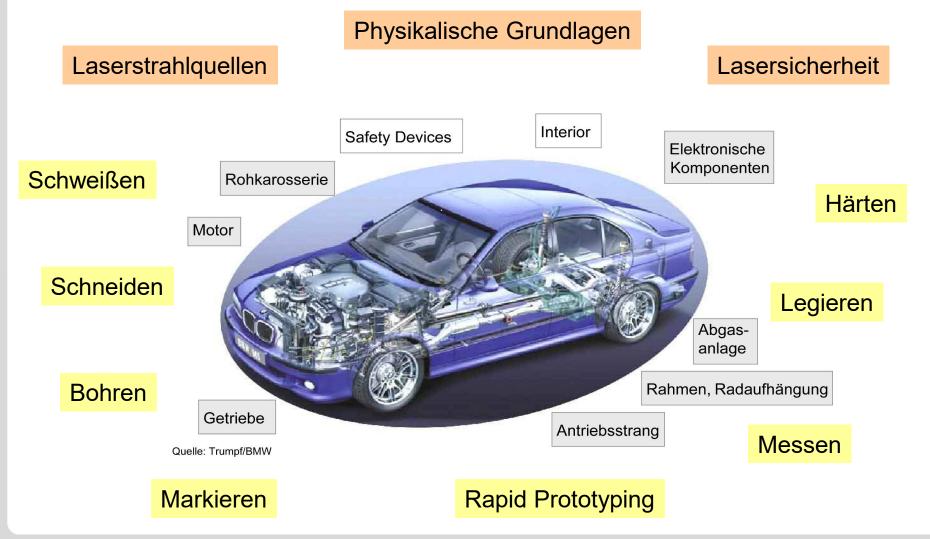
- Einführung und gesellschaftliche Trends mit Auswirkungen auf das Sportwagengeschäft
- Automobile Produktionsprozesse von der Idee bis zum Ende des Lebenszyklus
- Integrierte Entwicklungsstrategie und ganzheitliches Kapazitätsmanagement
- Management von Entwicklungsprojekten (Matrixorganisation, Multiprojektmanagement, Entwicklungscontrolling)
- Zusammenspiel zwischen Entwicklung, Produktion und Einkauf
- Rolle der Produktion aus Entwicklungssicht -Restriktion und Befähiger?
- Global verteilte Produktion und Entwicklung Herausforderung China
- Methoden zur Identifikation von technologischen Kernkompetenzen

Konstruktiver Leichtbau

(Ergänzungsfach 4 LP, 2 SWS im SS)

- Vermittlung von ...
 - Grundlagen des Leichtbaus
 - klassischen sowie modernen konstruktiven Leichtbaumethoden

Inhalt


- Allgemeine Aspekte des Leichtbaus
- Leichtbaustrategien und Bauweisen
- Gestaltungsprinzipien
- Numerische Werkzeuge
- Bionik
- Werkstoffauswahl
- Sicht der Praxis durch
 Gastdozenten aus der Industrie
- EAS.

Lasereinsatz im Automobilbau

Lasereinsatz im Automobilbau

(Ergänzungsfach 4 LP, 2 SWS im SS) (2/2)

Ausgehend von der Darstellung des **Aufbaues** und der **Funktionsweise** der wichtigsten, heute **industriell eingesetzten Laserstrahlquellen** werden deren typischen Anwendungsgebiete im Bereich des Automobilbaues besprochen.

Der Schwerpunkt der Vorlesung liegt hierbei auf der Darstellung des Einsatzes von Lasern zum **Fügen** und **Schneiden** sowie zur **Oberflächenmodifizierung**.

Weiterhin wird die Anwendung von Lasern in der Messtechnik vorgestellt.

Inhaltsverzeichnis

- Einführung
- Physikalische Grundlagen der Lasertechnik
- Laserstrahlquellen (Nd:YAG-, CO2-, Dioden-Laser)
- Strahleigenschaften,- führung, -formung
- Grundlagen der Materialbearbeitung mit Lasern
- Laseranwendungen im Automobilbau
- Lasersicherheit

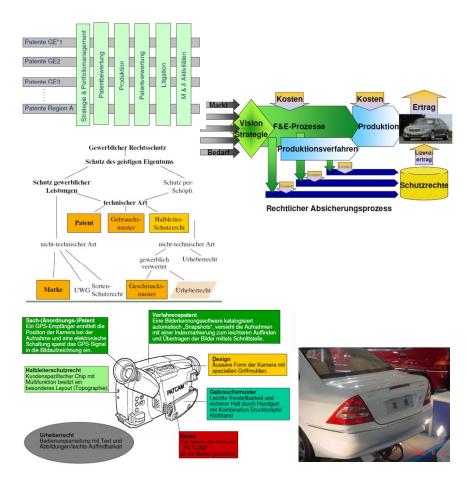
Leichtbau mit Faserverbundkunststoffen

Die Studierenden werden in kleinen Gruppen (max. 4 P.) mit einer Ingenieuraufgabe im Leichtbaukontext konfrontiert, z.B. der Auslegung eines möglichst tragfähigen Biegebalkens mit Bauraum- und Gewichtsbeschränkung. Zur Lösung des Problems werden verschiedene Materialen (Fasern, Harze, Schäume, etc.) und die notwendigen Materialdaten zur Verfügung gestellt, welche beliebig kombiniert werden können. Durch eine einführende Grundlagenvermittlung der Mechanik von Faser-Verbund-Kunststoffen und entsprechender Simulationstechniken entwickeln die Studierenden zunächst theoretische Lösungen, welche sie simulativ verifizieren. Anschließend werden die Lösungen in den Werkstätten des IAM-WK umgesetzt, die Faserverbundbauteile gefertigt und an den Prüfständen getestet. Die Studierenden erlangen fundiertes Wissen im Bereich der Faser-Verbund-Kunststoffe (Materialen, Fertigung, Fertigungseffekte, Restriktionen, etc.), der Struktursimulation (Modellaufbau, Vereinfachungen, Annahmen, Materialmodelle, etc.) sowie der Materialcharakterisierung und -prüfung. Aufbauend auf den einführenden Grundlagenveranstaltungen wird das Wissen größtenteils selbstständig, anhand von realen und praxisnahen Problemstellungen erarbeitet.

- Grundlagen Leichtbaustrategien
- Grundlagen Faser-Verbund-Kunststoffe
- Grundlagen FEM-Simulation mit nicht-isotropen Multimaterialsystemen
- Simulative Bauteilbetrachtung
- Fertigung von Faser-Verbund-Kunststoffen
- Mechanische Prüfung

Inhalte:

Balkenquerschnitt im Multi-Material-Design – Simulation und Bauteil


Patent und Patentstrategien in innovativen Unternehmen

(Ergänzungsfach 4 LP, 2 SWS im SS)

Inhalt:

- Einführung in gewerbliche Schutzrechte (Intellectual Property)
- · Beruf des Patentanwalts
- Anmelden und Erwirken von gewerblichen Schutzrechten
- Patentliteratur als Wissens-/Informationsquelle
- Arbeitnehmererfindungsrecht
- Aktive, projektintegrierte Schutzrechtsbetreuung
- Strategisches Patentieren
- Bedeutung gewerblicher SchutzrechteInternationale Herausforderungen und Trends
- Professionelle Verhandlungsführung und Konfliktbeilegungsverfahren
- Aspekte des Gesellschaftsrechts

Produkt-, Prozess- und Ressourcenintegration in der Fahrzeugentstehung (PPR)

(Ergänzungsfach 4 LP, 3 SWS im SS)

Lernziele

• Ein wesentlicher Aspekt dieser Vorlesung ist die sinnvolle Kombination von Ingenieurwissen mit praktischen, realen Erkenntnissen aus der Industrie.

Inhalt

- Überblick zur Fahrzeugentstehung (Prozess- und Arbeitsabläufe, IT-Systeme)
- Integrierte Produktmodelle in der Fahrzeugindustrie (Produkt, Prozess und Ressource Sichten)
- Neue CAx-Modellierungsmethoden (intelligente Feature-Technologie, Template- & Skelett-Methodik, funktionale Modellierung)
- Automatisierung und wissensbasierte Mechanismen in der Konstruktion und Produktionsplanung
- Anforderungs- und Prozessgerechte Fahrzeugentstehung (3D-Master Prinzip, Toleranzmodelle)
- Concurrent Engineering, verteiltes Arbeiten
- Erweiterte Konzepte: Prinzip der digitalen und virtuellen Fabrik (Einsatz virtueller Techniken und Methoden in der Fahrzeugentstehung)

Project Workshop "Automotive Engineering"

(Ergänzungsfach 6 LP, 3 SWS im WS und SS)

Themen:

Geschäftsrelevante Aufgaben aus der Industrie

Bearbeitung:

- Projektstruktur (Start-up, Goals, Deliverables, Milestones, Workpackages, ...)
- Teamarbeit mit 5-6 Studierenden
- Abschlusspräsentation und Diskussion im Team am Unternehmensstandort mit Management und Institutsangehörigen
- Bewertung der Arbeit und der Ergebnisse nach fachlichen, methodischen interaktionsbezogenen Kriterien. 3 SWS.

Mentoren: Industrie: Mitarbeiter aus Fachabteilung bzw.

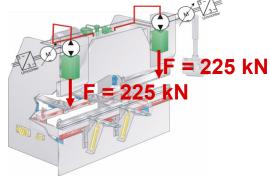
Personalabteilung

KIT: Akademische Mitarbeiter

Teilnahme: Bewerbungs- und **Auswahlverfahren**

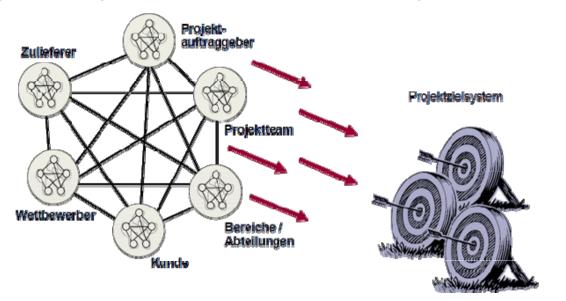
"Wie im echten Leben"

Projektierung und Entwicklung ölhydraulischer Antriebssysteme



(Ergänzungsfach4 LP, 2 SWS im WS)

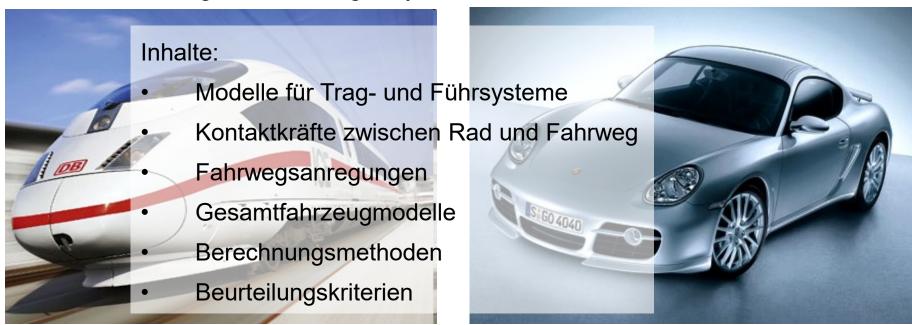
- Lernziel: Verständnis der Projektierung und Entwicklung mobiler und stationärer hydrostatischer Antriebssysteme
- Inhalte:
 - Marketing, Planung, Projektierung
 - Kreislaufarten Hydrostatik
 - Wärmehaushalt, Hydrospeicher
 - Filtration, Geräuschminderung
 - Auslegungsübung + Praxislabor


Projektmanagement in globalen Produktentwicklungsstrukturen

(Ergänzungsfach 4 LP, 2 SWS im WS)

Inhalte

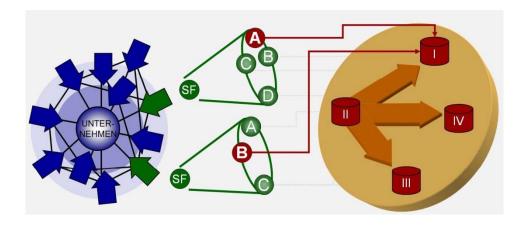
- Produktentwicklungsprozess
- Komplexitätsbeherrschung
- Methoden des Projektmanagements
- Projektorganisation
- Projektplanung im Wechselspiel von Entwicklung und Produktion

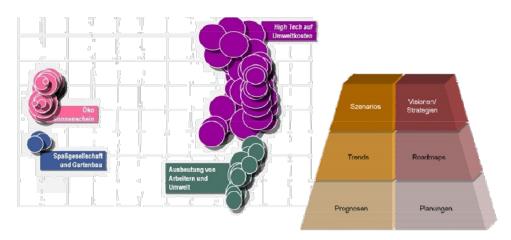

Rechnergestützte Fahrzeugdynamik

(Ergänzungsfach 4 LP, 2 SWS im SS)

Ziele:

- Modellbildung & Simulation für Schienen-/Straßenfahrzeuge
- Dynamik des Systems Fahrzeug-Fahrweg
- Modularisierung der Fahrzeugteilsysteme

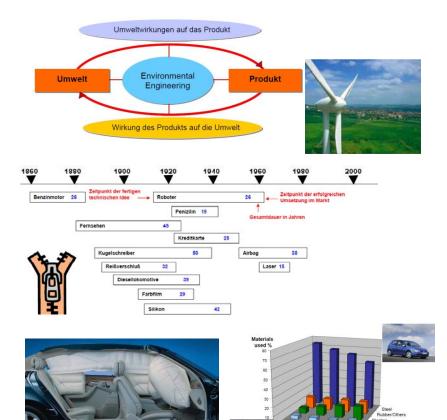

Strategische Potentialfindung zur Entwicklung innovativer Produkte – Case Study



(Ergänzungsfach 4 LP, 2 SWS im SS)

Szenario-Entwicklung

- · Schlüsselfaktoren
- Zukunftsprojektionen
- Szenarienanalyse
- · Zunkunftsraum
- Strategieentwicklung
 - Szenario-Monitoring
 - · Strategische Früherkennung
- Produktplanung
 - Potenzialfindung
 - · Ideenfindung
 - Marktsegmentierung


Ш

Sustainable Product Engineering

(Ergänzungsfach 4 LP, 2 SWS im SS)

- Elemente der nachhaltigen
 Produktentwicklung im wirtschaftlichen,
 sozialen und ökologischen Kontext
- Wechselwirkungen zwischen technischen Erzeugnissen und ihrer Umwelt
- Gleichrangigkeit von wirtschaftlichen, sozialen und ökologischen Aspekten
- Vermittlung von Fähigkeiten zur lebenszyklusbezogenen Produktauslegung
- Robustheit und Lebensdauer von Produkten als Basis für eine nachhaltige Produktentwicklung
- Umweltsimulation im Entstehungsgang technischer Erzeugnisse
- Beispiele von komplexen
 Fahrzeugkomponenten wie Airbag-Systemen
 und anderen aktuellen Produkten

Ш

Verbrennungsmotoren I

(Ergänzungsfach 4 SWS im SS)

Inhalt

- Einleitung, Historie, Konzepte
- Prinzip und Anwendungsfällte
- Charakteristische Kenngrößen
- Bauteile
- Kurbeltrieb
- Brennstoffe
- Ottomotorische Betriebsarten
- Dieselmotorische Betriebsarten
- Abgasnachbehandlung

Verhaltensgenerierung für Fahrzeuge

(Ergänzungsfach 4 LP, 2 SWS im SS)

Aktuelle Methoden zur Planung und Regelung von Fahrzeugtrajektorien

Inhalt

- + Längs- und Querdynamik
- + Wurzelortskurvenverfahren
- + Kaskadenregelung
- + Fahrwerkstabilisierung (ABS, ASR, ESP)
- + Längsführung (ACC, Notbremsung, ...)
- + Querführung (Spurhalten, Ausweichen, ...
- + Fahrsicherheit, -komfort, -effizienz
- + Trajektorienplanung, -regelung
- + Autonomes Fahren

Verzahntechnik

Karlsruher Institut für Technologie

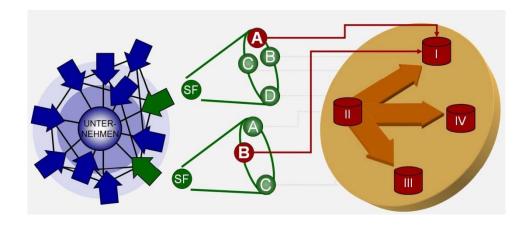
(Ergänzungsfach 4 LP, 2 SWS im WS)

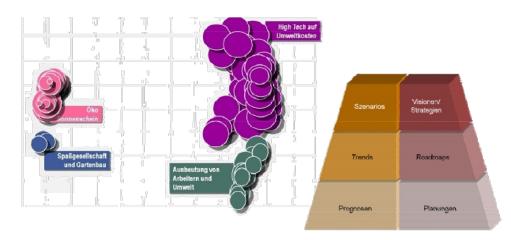
Im Rahmen der Vorlesung wird auf Basis der Verzahnungsgeometrie und Zahnrad- und Getriebearten auf die Bedürfnisse der modernen Zahnradfertigung eingegangen. Hierzu werden diverse Verfahren zur Herstellung verschiedener Verzahnungstypen vermittelt, die heute in der betrieblichen Praxis Stand der Technik sind. Die Unterteilung erfolgt in Weich- und Hartbearbeitung sowie spanende und spanlose Verfahren. Zum umfassenden Verständnis der Verzahnungsherstellung erfolgt zunächst die Darstellung der jeweiligen Verfahren, Maschinentechniken, Werkzeuge, Einsatzgebiete und Verfahrensbesonderheiten sowie der Entwicklungstendenzen. Zur Beurteilung und Einordnung der Einsatzgebiete und Leistungsfähigkeit der Verfahren wird abschließend auf die Fertigungsfolgen in der Massenproduktion und auf Fertigungsfehler bei Zahnrädern eingegangen. Abgerundet werden die Inhalte anhand anschaulicher Musterteile, aktuelle Entwicklungen aus dem Bereich der Forschung und einer Kursexkursion zu einem zahnradfertigenden Unternehmen.

Produkt- und Produktionskonzepte für moderne Automobile

(Ergänzungsfach 4 LP, 2 SWS im WS)

- Die Vorlesung beleuchtet die praktischen Herausforderungen des modernen Automobilbaus. Die Dozenten nehmen als ehemalige Führungspersönlichkeiten der Automobilindustrie Bezug auf aktuelle Gesichtspunkte der automobilen Produktentwicklung und Produktion.
- Ziel ist es, den Studierenden einen Überblick über technologische Trends in der Automobilindustrie zu vermitteln. In ihrem Rahmen wird insbesondere auch auf Anforderungsänderungen durch neue Fahrzeugkonzepte eingegangen, welche beispielsweise durch erhöhte Forderungen nach Individualisierung, Digitalisierung und Nachhaltigkeit bedingt sind. Die dabei auftretenden Herausforderungen werden sowohl aus produktionstechnischer Sicht als auch von Seiten der Produktentwicklung beleuchtet und dank der langjährigen Industrieerfahrung beider Dozenten anhand von praktischen Beispielen veranschaulicht.
- Die behandelten Themen sind im Einzelnen:
- Rahmenbedingungen der Fahrzeug- und Karosserieentwicklung
- Integration neuer Antriebstechnologien
- Funktionale Anforderungen (Crashsicherheit etc.), auch an Elektrofahrzeuge
- Entwicklungsprozess an der Schnittstelle Produkt & Produktion, CAE/ Simulation
- Energiespeicher und Versorgungsinfrastruktur
- Aluminium- und Stahlleichtbau
- FVK und Hybride Bauteile
- Batterie- Brennstoffzellen- und Elektromotorenproduktion
- · Fügetechnik im modernen Karosseriebau
- Moderne Fabriken und Fertigungsverfahren, Industrie 4.0


Strategische Potentialfindung zur Entwicklung innovativer Produkte – Case Study



(Ergänzungsfach 2 LP, 1 SWS im SS)

Szenario-Entwicklung

- · Schlüsselfaktoren
- Zukunftsprojektionen
- Szenarienanalyse
- · Zunkunftsraum
- Strategieentwicklung
 - Szenario-Monitoring
 - · Strategische Früherkennung
- Produktplanung
 - Potenzialfindung
 - · Ideenfindung
 - Marktsegmentierung

Ш

Python Algorithmen für Fahrzeugtechnik

(Ergänzungsfach 4 LP, 2 SWS im SS)

Inhalte

- Einführung in Python und nützliche Tools und Bibliotheken zur Algorithmenerstellung, grafischen Darstellung, Optimierung, symbolischen Rechnen und Maschinellem Lernen
- Methoden und Tools zur Erstellung von Software
- Praktische Programmierprojekte

Ziel:

Die Studierenden haben einen Überblick über die Programmiersprache Python und wichtige Python Bibliotheken um fahrzeugtechnische Fragestellungen durch Computerprogramme zu lösen. Sie kennen aktuelle Tools rund um Python um Algorithmen zu erstellen, anzuwenden und deren Ergebnisse zu interpretieren und zu visualisieren.

Wenn Sie Fragen haben ...

... wenden Sie sich bitte an

Prof. Dr. rer. nat. Frank Gauterin Institut für Fahrzeugsystemtechnik Campus Ost, Rintheimer Querallee 2, Raum 224, 76131 Karlsruhe

Telefon: +49 721 608 42370, Fax: +49 721 608 44146

E-Mail: frank.gauterin@kit.edu

http://www.fast.kit.edu

Dr.-Ing. Hans-Joachim Unrau Institut für Fahrzeugsystemtechnik Campus Süd, Kaiserstrasse 12, Gebäude 10.96, 76131 Karlsruhe

Telefon: +49 721 608 43795, Fax: +49 721 608 46228

E-Mail: Hans-Joachim.Unrau@kit.edu

http://www.fast.kit.edu