

WS 2019/2020 Vorlesung 2113106

Strukturberechnung von Faserverbundlaminaten

2. Mikromechanik und Homogenisierung des Faser-Matrix-Verbundes 28.10.2019 – Übung

Dr.-Ing. Luise Kärger

Institut Fahrzeugsystemtechnik (FAST), Teilinstitut für Leichtbautechnologie

Übersicht Vorlesung "Berechnung von Faserverbundlaminaten"

Stundenverteilung

- 1. 14.10. 1. Einführung Faserverbundlaminate
- 2. 21.10. 2. Mikromechanik, Homogenisierung
- 3. 28.10. Übung Homogenisierung und Versagensmechanismen auf Mikroebene
- 4. 04.11. 3. Makromechanisches Verhalten der Einzelschicht
- 5. 11.11. 4.1 Verhalten des Mehrschichtverbundes: Klassische Laminattheorie
- 6. 18.11. 4.2 Verhalten des Mehrschichtverbundes: Laminattheorien höherer Ordnung
- 7. 25.11. Übung Mehrschichtverbund (+ Austeilung der Abaqus-Übungsaufgaben Mehrschichtlaminate)
- 8. 02.12. 5. Finite Elementformulierungen für Mehrschichtlaminate
- 9. 09.12. Abaqus-Übung Mehrschichtlaminate
- 10. 16.12. 6.1 Versagensanalyse von Mehrschichtlaminaten (+ Austeilung der Abaqus-Übungsaufgaben Schädigungsmodellierung)
- 11. 13.01. 6.2 Schädigungsanalyse von Mehrschichtlaminaten
- 12. 20.01. Abaqus-Übung Schädigungsmodellierung
- 13. 27.01. 7. Auslegung von Mehrschichtlaminaten
- 14. 03.02. Zusammenfassung und Wiederholung
- 2 Dr.-Ing. Luise Kärger Strukturberechnung von Faserverbundlaminaten: 2. Mikromechanik Übung

Prüfungstermine (Anmeldung: gabriele.mueller-kuhn@kit.edu)

- Mo. 17.02.2018, 9:00-12:00
- Mo. 02.03.2018, *9:00-12:00*
- mit Vorbehalt:
 - Do. 16.04.2018, 9:00-12:00

Übersicht Vorlesung "Berechnung von Faserverbundlaminaten"

- 1. Einleitung
- 2. Mikromechanik und Homogenisierung des Faser-Matrix-Verbundes
 - Homogenisierung der Steifigkeiten: kurze Wiederholung
 - Übung: Effektive Steifigkeiten
 - Versagensmechanismen auf Mikroebene: Veranschaulichung
 - Übung: Effektive Festigkeiten
- 3. Makromechanisches Verhalten der Einzelschicht
- 4. Makromechanisches Verhalten des Mehrschichtverbunds
- 5. Finite Elementformulierungen für Mehrschichtlaminate
- 6. Versagens- und Schädigungsanalyse von Mehrschichtlaminaten
- 7. Auslegung von Mehrschichtlaminaten

Homogenisierung

- Überführung des heterogenen Materials in ein homogenes Material so dass makroskopisch ein äquivalentes Materialverhalten abgebildet wird
- Annahmen: regelmäßige Anordnung, periodische Randbedingungen, homogene Komponenten, ideale Verbindung zw. Faser und Matrix etc.

Effektivkennwerte sind abhängig von

- Matrixmaterial (isotrope Materialeigenschaften)
- Fasermaterial (isotrope oder querisotrope Materialeigenschaften)
- (Faserorientierung, Lagenaufbau)
- Faservolumengehalt φ
 (Volumen der Fasern bezogen auf das Gesamtvolumen der Einzelschicht)

 V_f = Volumen der Fasern im betrachteten Verbundvolumen A_f = Querschnittsfläche der Fasern im betrachteten Verbundquerschnitt

Homogenisierungsmethoden

- Abbildung von Materialeinschlüssen
- Energie-basiert (z.B. Voigt und Reuss)
- Semiempirische Modelle
- FE-basiert

5

Voigt-Reuss-Schranken

- Verzerrungsenergie formuliert bzgl. des Verzerrungsfeldes oder des Spannungsfeldes
- Voigt: konst. Verzerrungsfeld \rightarrow parallel geschaltete Federn \rightarrow Mischungsregel für Steifigkeiten
- Reuss: konst. Spannungsfeld \rightarrow in Reihe geschaltete Federn \rightarrow Mischungsregel für Nachgiebigkeiten

$$U \leq U(\varepsilon) = \frac{1}{2} \int (\bar{C}_{ij}\varepsilon_j)\varepsilon_i dV$$

$$\overline{E}_1 \leq \overline{E}_1^{(\varepsilon)} = \varphi E_{1f} + (1 - \varphi)E_m$$

$$U \leq U(\sigma) = \frac{1}{2} \int \sigma_i(\bar{S}_{ij}\sigma_j)dV$$

$$\frac{1}{\overline{E}_2} \leq \frac{1}{\overline{E}_2^{(\sigma)}} = \frac{\varphi}{E_{2f}} + \frac{(1 - \varphi)}{E_m}$$

Gleichmäßige
Spannungen
 \Rightarrow Reuss
(untere Schranke)
Gleichmäßige
Verzerrungen
 \Rightarrow Voigt
(obere Schranke)

- Voigt: gute N\u00e4herung in Faserrichtung
- Reuss: schlechte N\u00e4herung quer zur Faserrichtung

Dr.-Ing. Luise Kärger Strukturberechnung von Faserverbundlaminaten: 2. Mikromechanik Übung

[D. Hartung, NAFEMS Training Course, Simulation und Analyse von Composites]

Semiempirische Homogenisierungsmethoden

- Korrigierte Mischungsregeln f
 ür effektive Steifigkeiten quer zur Faserrichtung
- Modell nach Halpin-Tsai mit Parameter ξ zur Kurvenanpassung an E_2

$$\overline{E}_2 = \frac{(1+\xi\eta\varphi)}{1-\eta\varphi}E_m \quad \text{mit} \quad \eta = \frac{E_{2f}-E_m}{E_{2f}+\xi E_m}$$

Weitere empirische Ansätze nach Puck, Chamis, u.v.m.

FE-basierte Homogenisierung

- Modellierung eines RVE
- Aufbringung periodischer Randbedinungen
- Berechnung der homogenisierten Steifigkeitsmatrix \overline{C}_{ij} (*i*, *j* = 1 ... 6) auf Basis der "Asymptotischen Homogenisierungsmethode" (AHM)
- FE-Berechnung des Verschiebungs- und Spannungsfeldes innerhalb des RVE

Übersicht Vorlesung "Berechnung von Faserverbundlaminaten"

- 1. Einleitung
- 2. Mikromechanik und Homogenisierung des Faser-Matrix-Verbundes
 - Homogenisierung der Steifigkeiten: kurze Wiederholung
 - Übung: Effektive Steifigkeiten
 - Versagensmechanismen auf Mikroebene: Veranschaulichung
 - Ubung: Effektive Festigkeiten
- 3. Makromechanisches Verhalten der Einzelschicht
- 4. Makromechanisches Verhalten des Mehrschichtverbunds
- 5. Finite Elementformulierungen für Mehrschichtlaminate
- 6. Versagens- und Schädigungsanalyse von Mehrschichtlaminaten
- 7. Auslegung von Mehrschichtlaminaten

Beispiel zur Anwendung der Homogenisierungsmethoden

- E-Glasfasern als UD-Verstärkungen in Epoxidharzmatrix eingebettet
- Messungen am Verbund und am Reinharz durchgeführt

Verbundwerte	Reinharzwerte
E-Glas/Epoxy mit ϕ = 0,6	Ероху
E ₁ = 45 GPa	E _m = 3,3 GPa
E ₂ = 12 GPa	v _m = 0,3
G ₁₂ = 4,4 GPa	$G_m = E_m / [2(1 + v_m)] = 1,27 \text{ GPa}$
$v_{12} = 0,25$	
v ₂₃ = 0,25	

Aufgabe:

- Verbundeigenschaften E_1 und E_2 für $\varphi = 0.5$ unter Anwendung verschiedener Homogenisierungsmethoden bestimmen
- Zuglast in Faserrichtung: Welcher Anteil der Zuglast wird von den Fasern, welcher Anteil wird von der Matrix aufgenommen?

Beispiel zur Anwendung der analytischen Homogenisierungsmethoden

- 1. Schritt: Ermittlung der Faserkennwerte (inverse Anwendung)
- 2. Schritt: Ermittlung der Laminatwerte (direkte Anwendung)
- 1. Faserkennwerte in Längsrichtung

 $E_{f1} = E_{f2} = 72,8 \text{ GPa}, \quad v_f = 0,217$

Glasfaser isotrop \rightarrow **G**_f = E_f / [2(1+v_f)] = **29,91 GPa**

2. a) Effektive Kennwerte in Längsrichtung bei $\phi = 0.5$

$$E_1 = 38,0 \text{ GPa}, \quad v_{12} = 0,258$$

2. b) Aufnahme der Zuglast in Faserrichtung

$$\varphi = 0.5: \quad \frac{F_{1f}}{F_1} = \frac{E_{1f}A_f}{E_1A_{ges}} = \frac{72.8*0.5}{38*1} = 0.96$$
$$\varphi = 0.6: \quad \frac{F_{1f}}{F_1} = 0.97$$

Beispiel zur Anwendung der analytischen Homogenisierungsmethoden

- 1. Schritt: Ermittlung der Faserkennwerte (inverse Anwendung)
- 2. Schritt: Ermittlung der Laminatwerte (direkte Anwendung)
- 2. c) In Querrichtung ergeben sich je nach Formel unterschiedliche Werte

$$\overline{E}_{2}^{(\text{Reuss})} = 6,31 \text{ GPa}$$

$$\overline{E}_{2}^{(\text{HT},\xi=1)} = 8,85 \text{ GPa}$$

$$\overline{E}_{2}^{(\text{HT},\xi=1,22)} = 9,35 \text{ GPa}$$

$$\overline{E}_{2}^{(\text{Puck})} = 9,86 \text{ GPa}$$

$$\overline{E}_{2}^{(\text{Chamis})} = 10,16 \text{ GPa}$$

$$\overline{E}_{2}^{(\text{HT},\xi=2)} = 11,0 \text{ GPa}$$

$$\overline{E}_{2}^{(\text{Voigt})} = 38,0 \text{ GPa}$$

Halpin-Tsai

Herleitung von ξ anhand der Versuchswerte bei $\varphi = 0,6$ $\overline{E}_2^{(\varphi=0,6)} = 12 \text{ GPa} \quad \Box \gg \quad \xi = 1,22$

- Mittelwert aus fünf empirischen Formeln: E₂ = 9,84 GPa Abweichungen mit Größenordnung von ±10%
 - → Formeln berücksichtigen nur die Materialeigenschaften. Faseranordnung und Fasergeometrie werden nicht explizit erfasst.

zur Berücksichtigung von Faseranordnung und Fasergeometrie: Bestimmung der effektiven Kennwerte über numerische Homogenisierung mittels RVE

Beispiel zur Anwendung der numerischer Homogenisierungsmethoden

Numerische Homogenisierung mittels RVE

- Aufbau des repräsentativen Volumenelements (RVE)
 - Zusätzliche Informationen erforderlich: Anordnung der Fasern, Querschnittsgeometrie des Faser
 - Abmessungen a_i des RVE ergeben sich aus Faseranordnung, -durchmesser und -volumengehalt
 - Vernetzung des RVE mit finiten Volumenelementen

Composite Materials (2013)]

Beispiel zur Anwendung der numerischer Homogenisierungsmethoden

Numerische Homogenisierung mittels RVE

- Definition der 6 Einheitsrandbedingungen
- 6 Simulationen des RVE für die 6 Lastfälle
- Berechnung der Steifigkeitskomponenten \bar{C}_{ij}

 $\begin{pmatrix} \sigma_1 \\ \sigma_2 \\ \sigma_3 \\ \sigma_4 \\ \sigma_5 \\ \sigma_6 \end{pmatrix} = \begin{bmatrix} C_{11} & C_{12} & C_{13} & 0 & 0 & 0 & 0 \\ C_{12} & C_{22} & C_{23} & 0 & 0 & 0 & 0 \\ C_{13} & C_{23} & C_{33} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0, 5(C_{22} - C_{23}) & 0 & 0 \\ 0 & 0 & 0 & 0 & C_{66} & 0 \\ 0 & 0 & 0 & 0 & 0 & C_{66} \end{bmatrix} \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \varepsilon_3 \\ \varepsilon_4 \\ \varepsilon_5 \\ \varepsilon_6 \end{pmatrix}$

Berechnung von
$$\bar{C}_{ij}$$

über die lokalen
Spannungen im RVE:
 $\bar{C}_{ij} = \frac{1}{|V|} \int [\sigma_i(\mathbf{u}^j)] dV$

erste Spalte der Steifigkeitsmatrix über Randbed. $\epsilon_1^0 = 0, 01$; $\epsilon_2^0 = \epsilon_3^0 = \gamma_4^0 = \gamma_5^0 = \gamma_6^0 = 0$

- zweite Spalte über Randbedingung \epsilon_2^0 = 0,01 ; \epsilon_1^0 = \epsilon_3^0 = \gamma_4^0 = \gamma_5^0 = \gamma_6^0 = 0
 etc.
- Berechnung der Ingenieurkonstanten E_1 , E_2 , G_{12} etc. anhand der Steifigkeitskomponenten \bar{C}_{ij}

Übersicht Vorlesung "Berechnung von Faserverbundlaminaten"

- 1. Einleitung
- 2. Mikromechanik und Homogenisierung des Faser-Matrix-Verbundes
 - Homogenisierung der Steifigkeiten: kurze Wiederholung
 - Übung: Effektive Steifigkeiten
 - Versagensmechanismen auf Mikroebene: Veranschaulichung
 - Ubung: Effektive Festigkeiten
- 3. Makromechanisches Verhalten der Einzelschicht
- 4. Makromechanisches Verhalten des Mehrschichtverbunds
- 5. Finite Elementformulierungen für Mehrschichtlaminate
- 6. Versagens- und Schädigungsanalyse von Mehrschichtlaminaten
- 7. Auslegung von Mehrschichtlaminaten

Versagensverhalten von FVK

- Versagensverhalten ist von der Belastungsbedingung und der Faserorientierung abhängig
- Physikalische Versagensmechanismen, die zum Versagen führen können:
 - Faserbruch innerhalb der UD-Schicht (intralaminar)
 - Zwischenfaserbruch innerhalb der UD-Schicht (intralaminar)
 - Delamination zwischen zwei UD-Schichten (interlaminar)

Versagensmechanismen (Quelle: A. Puck, Festigkeitsanalyse von Faser-Matrix-Laminaten, 1996)

14 Dr.-Ing. Luise Kärger Strukturberechnung von Faserverbundlaminaten: 2. Mikromechanik Übung

Zugfestigkeit in Faserrichtung

- Annahmen f
 ür die einfache Mischungsregel:
 - gleiche Dehnungen
 - Faserbruchdehnung ist kleiner gleich der Matrixbruchdehnung

$$X_t = X_{f,t} \, \varphi_f + \sigma_m (\varepsilon_{ft,max}) (1 - \varphi_f)$$

 Verbesserte Versagenshypothesen zur Berücksichtigung von Streuungen, Nachbarfasern und/oder Interfaceeigenschaften

Druckfestigkeit in Faserrichtung

- Stabilität der Fasern muss berücksichtigt werden
- gegenphasiges, gleichphasiges oder örtliches Mikroknicken

Querzug-, Querdruck-, Schubfestigkeit

- Schwächen dieser Annahmen: Streuungen, Interface-Versagen, geneigte Bruchebene unter Druckbelastung u.a.

Zugfestigkeit in Faserrichtung

- Annahmen f
 ür die einfache Mischungsregel:
 - gleiche Dehnungen
 - Faserbruchdehnung ist kleiner gleich der Matrixbruchdehnung

$$X_t = X_{f,t} \, \varphi_f + \sigma_m (\varepsilon_{ft,max}) (1 - \varphi_f)$$

Unter Annahmen linearer Elastizität bis zum Bruch kann X_t in Abhängigkeit der elast. Kennwerte formuliert werden

$$X_{t} = f(X_{f,t}, \varphi_{f}, E_{m}, E_{f})$$
$$X_{t} = X_{f,t} \left(\varphi_{f} + \frac{E_{m}}{E_{f}} (1 - \varphi_{f})\right)$$

- In Realität ist die Faserfestigkeit nicht konstant, sondern über die Faserlänge und von Faser zu Faser statistisch verteilt
 - \rightarrow nicht alle Fasern versagen gleichzeitig
 - → eine nicht-konstante Spannungsverteilung entsteht in der Nachbarschaft des Faserbruch
 - Schubspannungspeak am Interface
 - erhöhte Normalspannung in Nachbarfasern

16 Dr.-Ing. Luise Kärger

Strukturberechnung von Faserverbundlaminaten: 2. Mikromechanik Übung

- Initiale Faserbrüche bewirken unterschiedliches Schadenswachstum, je nach Art des Materials:
 - Spröde Matrix und festes Interface → Matrix-Zugversagen
 - Schwaches Interface und/oder große Faserbruchdehnung: → Faser-Matrix-Ablösung
 - Duktile Matrix und festes Interface: → Matrix-Schubversagen
 - meist lokalisiert der Schaden in den benachbarten Fasern
 - mit wachsender Last steigt die Dichte der Einzelfaserbrüche, benachbarte Faserbrüche nehmen zu
 - lokalisierte Schäden interagieren und führen schließlich zum Totalversagen

17

[Daniel and Ishai: Engineering Mechanics of Composite Materials (2006)]

Typische Versagensmuster bei Faserzugbruch

- Boron/Epoxy-Verbund (links)
 sprödes Faser- und Matrix-Versagen
 → kaum Interface-Versagen
- S-Glas/Epoxy-Verbund (rechts) hohe Bruchdehnung der Fasern
 → ausgeprägtes Interface-Versagen

Boron/epoxy

S-glass/epoxy

Unwirksame Faserlänge

- neben einem Faserbruch steigt die Faserspannung von 0 an und nähert sich exponentiell der vollen Faserspannung σ_{f0} an
- Ansatz von Rosen et al. (1964) zur Beschreibung des Spannungsanstiegs in der Faser:

$$\sigma_f(x)=\sigma_{f0}(1-e^{-\gamma x})$$

 χ = Abstand vom Faserbruch mit d = Faserdurchmesser

$$\gamma = \sqrt{\frac{G_m}{E_f} \frac{\sqrt{\varphi}}{1 - \sqrt{\varphi}}} \frac{2}{d}$$

unwirksame Faserlänge δ :

Abstand vom Faserbruch bis zu einem spezifischen Anteil $k = \frac{\sigma_f}{\sigma_{f0}}$ der vollen Faserspannung σ_{f0} , üblich ist k = 0.9

Aufgabe: Wie groß ist δ ?

(in Abhängigkeit der Materialkennwerte und des Faserdurchmessers d, und unter Annahme von k = 0.9)

Dr.-Ing. Luise Kärger

Strukturberechnung von Faserverbundlaminaten: 2. Mikromechanik Übung

19

Unwirksame Faserlänge δ

Abstand vom Faserbruch bis zu einem spezifischen Anteil $k = \frac{\sigma_f}{\sigma_{f0}} = 0,9$ der vollen Faserspannung σ_{f0}

$$\delta = -\frac{\ln(1-k)}{\gamma} = 1,15 \sqrt{\frac{E_f}{G_m} \frac{1-\sqrt{\varphi}}{\sqrt{\varphi}}} d$$

Schubspannung am Interface $\tau_i(x)$ Berechnung über Gleichgewichtsbeziehung $\frac{\partial \sigma_f}{\partial x} = -\frac{4\tau_i}{d}$

unter Anwendung das Ansatzes von Rosen et al. $\sigma_f(x) = \sigma_{f0}(1 - e^{-\gamma x})$ mit $\gamma = \sqrt{\frac{G_m}{E_f} \frac{\sqrt{\varphi}}{1 - \sqrt{\varphi}} \frac{2}{d}}$

Aufgabe: Wie groß ist die Schubspannung am Interface? (in Abhängigkeit von x sowie von den Materialkennwerten, Faserdurchmesser d und der vollen Faserspannung σ_{f0})

Schubspannung am Interface:

$$\frac{\sigma_i(x)}{\sigma_{f0}} = -\frac{d}{4}\gamma e^{-\gamma x} = -\frac{1}{2}\sqrt{\frac{G_m}{E_f}\frac{\sqrt{\varphi}}{1-\sqrt{\varphi}}}e^{-\gamma x}$$

20 Dr.-Ing. Luise Kärger Strukturberechnung von Faserverbundlaminaten: 2. Mikromechanik Übung

Zugversagen bei spröder Matrix

Bruchdehnung der Matrix ist geringer als die der Fasern

 $\varepsilon_{mt,max} \leq \varepsilon_{ft,max}$

- (z.B. Verbunde mit Keramik-Matrix)
- → Initiale Schädigung sind Matrixrisse

Verbundfestigkeit wird von Matrixfestigkeit bestimmt:

$$X_{t} = X_{m,t} \left(1 - \varphi_{f} \right) + \sigma_{f} \left(\varepsilon_{mt,max} \right) \varphi_{f}$$

 Unter Annahmen linearer Elastizität bis zum Bruch kann X_t in Abhängigkeit der elast. Kennwerte formuliert werden

$$X_t = f(X_{m,t}, \varphi_f, E_m, E_f)$$

$$X_t = X_{m,t} \left(\frac{E_f}{E_m} \varphi_f + (1 - \varphi_f) \right)$$

21 Dr.-Ing. Luise Kärger Strukturberechnung von Faserverbundlaminaten: 2. Mikromechanik Übung

Schadenswachstum bei spröder Matrix

- Lokale Spannungsverteilung neben den Matrixrissen
 - Schubspannungs-Peak am Interface
 - erhöhte Zugspannung in benachbarten Fasern
- Es folgen Faser-Matrix-Ablösung und schließlich Faserbruch, sichtbar durch:
 - Matrixbruch, Faserbruch und Faserauszug

[Daniel and Ishai: Engineering Mechanics of Composite Materials (2006)]

Die Berechnung effektiver Zugfestigkeiten in Faserrichtung hängt ab vom Material, vom Faservolumengehalt sowie von Anordnung und Geometrie der Fasern

2 Mikromechanik: Transversal-Zugfestigkeit

Transversale Zugbelastung

Einfache Mischungsregel unter Annahme des Erreichens der Bruchdehnung $\varepsilon_{mt,max}$ der Matrix:

$$Y_t = E_2 \varepsilon_{2t,max} \qquad \text{mit} \qquad \varepsilon_{2t,max} = \left[\frac{d}{s}\frac{E_m}{E_f} + \left(1 - \frac{d}{s}\right)\right] \varepsilon_{mt,max}$$

- Effektive Zugfestigkeit = bruchmechanische Phänomene auf Mikroebene (Risswachstum)
- Faseranordnung ist in der Realität nicht regelmäßig
- Zugfestigkeit in Faser und Matrix streut stark
- hohe Spannungs- und Verzerrungskonzentrationen
 - zu den lastinduzierten Spannungen kommen Eigenspannungen hinzu, die z.B. während der Aushärtung entstehen
- Kritische Spannungen und Verzerrungen treten i.d.R. am Faser-Matrix-Interface auf

 \rightarrow Querzugversagen kann auch durch Interface-Versagen verursacht sein

- Spannungsspitze in der Matrix tritt in Zugrichtung am Interface auf
- Spannungskonzentrationsfaktor:

$$k_{\sigma} = \frac{\sigma_{r,max}}{\sigma_2}$$

23 Dr.-Ing. Luise Kärger Strukturberechnung von Faserverbundlaminaten: 2. Mikromechanik Übung

2 Mikromechanik: Transversal-Zugfestigkeit

Transversale Zugbelastung

Ermittlung des Spannungskonzentrationsfaktors in Abhängigkeit des Faservolumengehalts für verschiedene Materialsysteme (mittels Finite-Differenzen-Methode und Photoelastischer Methode)

Unter Annahme von

- Maximalspannungskriterium
- linear-elastischem Verhalten bis zum Matrixbruch
- perfekter Faser-Matrix-Anbindung

ergibt sich die effektive transversale Zugfestigkeit:

$$Y_t = \frac{Y_m}{k_\sigma}$$

 wenn zusätzlich fertigungsbedingte Eigenspannungen *σ*_{rm} berücksichtigt werden, ergibt sich:

$$Y_t = \frac{1}{k_\sigma} (Y_m - \sigma_{rm})$$

[Daniel and Ishai: Engineering Mechanics of Composite Materials (2006)]

24 Dr.-Ing. Luise Kärger Strukturberechnung von Faserverbundlaminaten: 2. Mikromechanik Übung

2 Mikromechanik: Transversal-Zugfestigkeit

Transversale Zugbelastung: Numerische Analyse mit SRVE

- durch unregelmäßige Faseranordnung und große Steifigkeitsunterschiede zwischen Fasern und Matrix entstehen lokale Spannungsspitzen, die zu Mikrorissen führen
- Schadenswachstum: Mikrorisse wachsen und verbinden sich zu größeren Rissen, die schließlich zum Versagen der Schicht führen
 → Makroriss (= Zwischenfaserbruch, Matrixbruch)

[Dominik Naake: Promotion in Kooperation mit Bosch (2018)]

BOSCH

2 Mikromechanik: Virtuelle Experimente mittels SRVE

- Numerische Studien mittels SRVE: Analyse des Schädigungsverhaltens auf Mikroebene
- Numerische Homogenisierung mittels SRVE: Parameterfitting eines (effektiven) Materialmodells auf Makroebene über die Berechnung verschiedener Belastungsszenarien und mehrerer statistischer Realisierungen des SRVE

[D. Naake, F. Welschinger, L. Kärger, F. Henning. A three-dimensional damage model for transversely isotropic composites in the framework of finite strain. 21st International Conference on Composite Materials (ICCM21), Xi'An, China, 2017.]

26 Dr.-Ing. Luise Kärger Strukturberechnung von Faserverbundlaminaten: 2. Mikromechanik Übung

Übersicht Vorlesung "Berechnung von Faserverbundlaminaten"

- 1. Einleitung
- 2. Mikromechanik und Homogenisierung des Faser-Matrix-Verbundes
 - Homogenisierung der Steifigkeiten: kurze Wiederholung
 - Ubung: Effektive Steifigkeiten
 - Versagensmechanismen auf Mikroebene: Veranschaulichung
 - Übung: Effektive Festigkeiten
- 3. Makromechanisches Verhalten der Einzelschicht
- 4. Makromechanisches Verhalten des Mehrschichtverbunds
- 5. Finite Elementformulierungen für Mehrschichtlaminate
- 6. Versagens- und Schädigungsanalyse von Mehrschichtlaminaten
- 7. Auslegung von Mehrschichtlaminaten

2 Mikromechanik: Übung Effektive Festigkeiten

Gesucht: Verbundfestigkeit, bei der die erste der beiden Komponenten versagt

Carbonfaser-Epoxy-Verbund mit $\phi = 0,65$

Faserwerte Carbon $E_{1f} = 235 \text{ GPa}$ $X_{ft} = 3450 \text{ MPa}$

Faserversagen:

$$X_t = X_{f,t} \left(\varphi_f + \frac{E_m}{E_f} (1 - \varphi_f) \right)$$

= 2.263,8MPa

 $X_{mt} = 104 \text{ MPa}$

 $E_{m} = 4,14 \text{ GPa}$

Matrixwerte Epoxy

Matrixversagen:

$$X_t = X_{m,t} \left(\frac{E_f}{E_m} \varphi_f + (1 - \varphi_f) \right)$$

= 3.873,6MPa

Siliziumkarbid-Keramik-Verbund mit $\phi = 0,4$

Faserwerte Siliziumkarbid $E_{1f} = 172GPa$ $X_{ft} = 1930 MPa$ Matrixwerte Keramik $E_m = 97 \text{ GPa}$ $X_{mt} = 138 \text{ MPa}$

Faserversagen:

$$X_t = X_{f,t} \left(\varphi_f + \frac{E_m}{E_f} (1 - \varphi_f) \right)$$

= 1.425,1MPa

Matrixversagen:

$$X_t = X_t = X_{m,t} \left(\frac{E_f}{E_m} \varphi_f + (1 - \varphi_f) \right)$$

= 180,7 MPa

Institut für Fahrzeugsystemtechnik Lehrstuhl für Leichtbautechnologie

28 Dr.-Ing. Luise Kärger Strukturberechnung von Faserverbundlaminaten: 2. Mikromechanik Übung

2 Mikromechanik: Übung Effektive Festigkeiten

Aufgabe: Wie groß ist die maximale Schubspannung am Faser-Matrix-Interface, die neben einem Faserbruch entstehen kann?

Carbonfaser-Epoxy-Verbund mit $\phi = 0,65$

Faserwerte CarbonMatrixwerte Epoxy $E_{1f} = 235 \text{ GPa}$ $E_m = 3,45 \text{ GPa}$ $X_{ft} = 3450 \text{ MPa}$ $G_m = 1,27 \text{ GPa}$ $d = 8 \mu m$

Schubspannungsverteilung:

$$\frac{\tau_i(x)}{\sigma_{f0}} = -\frac{d}{4}\gamma e^{-\gamma x}$$

Maximale Schubspannung unmittelbar neben dem Faserbruch (x=0)

$$\gamma = \sqrt{\frac{G_m}{E_f} \frac{\sqrt{\varphi}}{1 - \sqrt{\varphi}}} \frac{2}{d} = 34,1 \ \frac{1}{mm}$$

$$\tau_{i,max} = -235MPa$$

29 Dr.-Ing. Luise Kärger Strukturberechnung von Faserverbundlaminaten: 2. Mikromechanik Übung

FAST-LBT Kontakte

Karlsruher Institut für Technologie (KIT) FAST Institut für Fahrzeugsystemtechnik LBT Lehrstuhl für Leichtbautechnologie

Rintheimer-Querallee 2, 76131 Karlsruhe Tel.: +49 (721) 608-45905 http://www.fast.kit.edu/

Lehrstuhlleitung Prof. Dr.-Ing. Frank Henning

frank.henning@kit.edu, phone +49 721 608 45905 frank.henning@ict.fraunhofer.de, +49 721 4640 711

Stellvertretende Lehrstuhlleitung Dr.-Ing. Luise Kärger

luise.kaerger@kit.edu, phone +49 721 608 45386

Themenfeldkoordination Prozesssimulation M. Sc. Nils Meyer

nils.meyer@kit.edu, Tel. +49 721 608 45385

Themenfeldkoordination CAE-Kette und StruktursimulationM. Sc. Constantin Kraußconstantin.krauss@kit.edu, Tel. +49 721 608 45896

