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ABSTRACT 
This paper presents the fundamental interrelation of 

uncertainty in the context of the modeling and simulation 
process of fluid power systems. Building up a simulation model 
means to represent a real system and its dynamic behavior in an 
experimental model. This process generally requires a model 
simplification. Additionally, in an early stage of product 
development, a certain lack of knowledge about a system is to 
be assumed. These so called epistemic uncertainties lead to a 
deviation of the simulated system’s behavior from the real one. 
One possibility to consider such uncertainties in simulation is 
by using the approach of fuzzy arithmetic. This approach 
allows substituting crisp parameter values through fuzzy 
intervals. This way, uncertainty-sensitive simulation results can 
be obtained and the reliability of simulation can be significantly 
increased. 

Especially for the simulation of fluid power systems with 
lumped parameters, a trade-off between simulation 
performance and the level of detail of the model has often to be 
accepted. The assumption of uncertainties in fluid power 
simulation shows the potential of creating simplified simulation 
models, which at the same time promise to have a high 
conformance to the real system behavior. 

Using the fuzzy arithmetic approach under application of 
the transformation method by Hanss, the potential for fluid 
power system simulation in consideration of epistemic 
uncertainties is explained and evaluated. Therefore, a 
simulation model is tested as an example application using 
different degrees of parameter fuzzification.  

INTRODUCTION 
 In the last years, simulation technology has become 
gradually accepted as a tool to increase the efficiency of the 
product development process of fluid power systems. There are 
many reasons which contribute to this trend. The main 
motivation however can be summarized by the fact that the 
amount of real prototypes can be reduced and therefore 
development time and costs are optimized [1]. Furthermore, 
shorter product innovation cycles and product complexity will 
contribute to a more intensive and integrated usage of 
simulation in the future [2]. One of the main drivers, which lies 
underneath this process of increased simulation usage, is to 
gain knowledge about a system and its dynamic processes, 
which afterwards can be transferred to reality (on the basis of 
[3]). To do so, models have to be created which “adequately” 
represent the system and which can be used for (digital) 
experimentation or simulation. A model is by definition the 
representation of the essential properties of a system. This 
implies the fact, that irrelevant effects for one certain 
observation have to be explicitly excluded from the model. 
Therefore, a deviation of experimentation results between a real 
and a simulated system always has to be assumed. This 
deviation can be traced back to simulation errors and 
uncertainties [4]. Whereas simulation errors have their origins 
in mathematics, or in numerics respectively, uncertainties 
represent the nondeterminism of a source for a result deviation. 
The latter can again be split up into irreducible or reducible 
effects, which leads to the corresponding definition of aleatory 
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and epistemic uncertainties. In total, the determination of the 
three mentioned effects contribute to how realistic a model is. 
 In the area of fluid power systems, a very common way to 
simulate the dynamic system behavior is via physical models 
with lumped parameters. As a precondition for building up a 
model, there are two possible cases: A physical system already 
exists and shall be modeled or there is a, to this point of time 
not-exisiting system, which then has to be proposed. Taking 
one of these possibilities and the task, of building up a model of 
the system, the challenge rises that a certain level of detail has 
to be defined at first. And, depending on this level of detail, 
sooner or later one might come to the point, where the 
knowledge about the system is not sufficient to assign values to 
the model parameters. This phenomenon is often described by 
the term “lack of knowledge” in scientific literature (e.g. [4-6]), 
which again is the main reason for the definition of the above 
mentioned epistemic uncertainties. This type of uncertainty 
represents a crucial influence on the conformance of a model to 
an existing physical system, as they are individual for each 
model – whereas simulation errors are to a great part irrelevant 
for the modeling process. In order to explain this context in 
detail, a classification of uncertainties will be given as well as a 
discussion about the modeling process with focus on the 
influence of uncertainties in fluid power systems simulation. 

 
CLASSIFICATION OF UNCERTAINTIES 
Assuming uncertainties and errors in the modeling and 
simulation process is a key factor to assess the deviation of 
measurement and simulation results. This again is a basis for 
evaluating the potential validity of a simulation (see Fig. 1).  

 
Fig. 1 – Categorization of potential simulation validity 
 

The term simulation validity in this case is not just referred 
to as the validation phase of a simulation or computerized 
model to reality, but it furthermore is meant to cover the 
influence factors in all modeling phases and activities, which 
will contribute to a deviation of simulation and measurement 
results.  In order to distinguish those factors, corresponding 
definitions will be given in this section. 

In simulation, the term uncertainty is used to express that a 
nominal simulation is not a complete imitation of reality but 
lacks some unspecified parts [7]. Furthermore, two already 
above mentioned types of uncertainty are defined in literature 
in order to qualify the sources of uncertainty. 

The first type is named as aleatory uncertainty (aleae [lat.] 
= dice), which according to Oberkampf [4] describes the 
inherent variation associated with the physical system or the 
environment under consideration. Sources of aleatory 
uncertainty are commonly represented by distributed quantities 
that can take on values in an established or known range, but 
for which the exact value will vary by chance. This is the reason 
why aleatory uncertainties are also referred to as irreducible 
uncertainties. Alternatively, aleatory uncertainty is denoted by 
the terms inherent uncertainty, variability and stochastic 
uncertainty. The fact, that chance is the most influencing factor 
on this type of uncertainty, probability density functions are 
normally used to propagate them in a simulation model, e.g. by 
Monte Carlo simulation [7, 8]. An example for aleatory 
uncertainties is the production tolerance, which exists in a 
known range but with by chance varying values. 

The second type of uncertainty is described by the so 
called epistemic uncertainties (episteme [gr.] = knowledge). In 
contrast to aleatory uncertainties, they arise from a lack of 
information, vagueness in system definition or simplification 
and idealization. Oberkampf [4] defines epistemic uncertainty 
as a potential inaccuracy in any phase or activity of the 
modeling process that is due to lack of knowledge. As a 
consequence, the inaccuracy does not necessarily have to exist 
as it is a “potential inaccuracy”. In literature, epistemic 
uncertainty is also referred to as reducible, subjective or 
cognitive uncertainty. The contribution of epistemic 
uncertainties to a system can be regarded by fuzzy numbers, 
interval methods or evidence theory. Although many 
approaches have been made up – often, approaches for FE-
models - , it has turned out, that many of them are useable for 
specific cases only [9]. Promising interval or fuzzy approaches 
come with a general applicability by being able of using black-
box models [7]. One of them is the transformation method of 
fuzzy arithmetic of Hanss [10], which will be regarded in this 
paper. 

In terms of completeness of the classification, the 
occurring error in modeling and simulation shall be explained: 
an error occurs according to Oberkampf [4] as a recognizable 
inaccuracy which is not due to lack of knowledge and which is 
identifiable upon examination. It furthermore can be split up 
into acknowledged or unacknowledged errors. In case of the 
first, the analyst is aware of the error during modeling and 
simulation. An example is the finite precision arithmetic in a 
computer which at the bottom line is a rounding error. The 
unacknowledged errors are not recognized by the analyst, but 
still recognizable, e.g. if a simulation mistake occurs. 

As the lack of knowledge has a striking influence on the 
process of building up fluid power models and thus, on the 
quality of simulation results, epistemic uncertainties will later 
be regarded more in detail in this context. In order to clarify the 
above mentioned influence, the following section will give a 
general overview about the modeling process 
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MODELING PROCESS 
There are many possibilities to define the activities and 

phases of the modeling process. On the one hand, for a very 
specialized modeling task, it is valid to use a general procedure 
for problem solving (e.g. S.P.A.L.T.E.N. [11]). On the other 
hand, many procedure models have been made up especially 
for the modeling and simulation process, which cover a broad 
range of application cases and modeling objectives. Depending 
on the latter, the number of necessary activities and modeling 
phases increases with the specificity of the application case. A 
fundamental model for the modeling and simulation process 
was published by the Technical Committee on Model 
Credibility of the Society for Computer Simulation [12] in 1979 
(see Fig. 2). It generally introduces three modeling levels 
“reality”, “conceptual model” and “computerized model”, 
which interdepend by the modeling phases for qualification, 
verification and validation of the models and the corresponding 
consecutive activities, “Analysis”, “Programming” and 
“Computer Simulation”.  

 
Fig. 2 – Modeling procedure proposed by the Society for 
Computer Simulation [12] 
 

More detailed and elaborated models were published e.g. 
by Jacoby and Kowalik [13], who had their focus on 
mathematical modeling aspects, as well as the modeling effort. 
Sargent, for example, presented a modeling procedure, which 
refines the model in Fig. 2 with the objective of a general 
applicability for any modeling and simulation process [14].  

The so far presented modeling procedures have their 
specific focus concerning a specific modeling and simulation 
objective. For regarding the error and uncertainty in modeling 
and simulation, Oberkampf et al. in [4] propose a six phase-
modeling procedure for computational modeling and simulation 
(see Fig. 3) based on existing, partly in this paper mentioned 
modeling procedures. In his modeling procedure, he focuses, 
amongst others, on the distinction between aleatory and 

epistemic uncertainties. Therefore, the proposed procedure of 
Oberkampf will be explained more in detail. 

 
Fig. 3 – Modeling phases and activities by Oberkampf [4] 
 

The first step of the procedure is the derivation of a 
conceptual model based on an existing or a proposed physical 
system or process. In this phase, the simulation objectives, the 
specification of the physical system and the environment as 
well as boundary conditions are set. This includes physical 
events and the concept for coupling of different physical 
processes, which in fluid power systems often is the coupling of 
hydraulic and mechanical structures. Also, the modeling and 
simulation effort is defined and in dependency on that, a 
required level of detail for the model is determined. The 
complexity of the model afterwards will depend on the number 
of physical phenomena being considered and the complexity of 
those phenomena. On basis of the conceptual design of the 
model, the system and environment characteristics have to be 
analyzed concerning the existence of aleatory or epistemic 
uncertainty. The first phase, however, does explicitly exclude 
the creation of mathematical equations. The propagation or the 
mathematical representation of uncertainties also will take 
place in the next phase. 

The second phase, mathematical modeling of the 
conceptual system, contains the development of detailed 
mathematical models of the conceptual models as a main 
activity. This includes the complete specification of all 
differential equations, auxiliary, boundary and initial conditions 
of the system. In the total modeling and simulation procedure, 
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the amount of nondeterministic elements, which lead to 
uncertainties is especially high in the phase of mathematical 
modeling. Aleatory uncertainties might typically exist through 
the definition of system parameters, boundary or initial 
conditions, if the values vary randomly from element to 
element. Epistemic uncertainties exist just by the fact that a 
mathematical model is always incomplete as it is a 
simplification of reality.  

The following phases,  
• discretization and algorithm selection for the 

mathematical model, 
• computer programming of the discrete model, 
• numerical solution of the computer program 

model and 
• representation of the numerical solution 

are neither influenced by values which vary by chance nor 
by lack of knowledge. As a consequence, the quality of the 
activities in these phases is mainly controlled by simulation 
errors, which to a great part have a high level of maturity and 
therefore are of minor importance for the following 
examination.  

 

UNCERTAINTY IN THE MODELLING PROCESS OF 
FLUID POWER SYSTEMS 

There are in general two approaches for the simulation 
based analysis of a hydraulic system in the time domain [15]: 

• exact calculation of (mass or volume) flow 
through components using computational fluid 
dynamics (CFD), 

• simulation of hydrostatic systems on the basis of 
models with lumped parameters. 

The latter nowadays dominates the application area of 
complete system simulations resulting from the ease of model 
build up. In this paper, the focus of simulation of fluid power 
systems is on simulation with lumped parameters. In this type 
of simulation, usually predefined components, which represent 

a physical phenomenon, can be chosen from a model library 
and afterwards are interconnected via nodes [16]. Additionally, 
at least one hydraulic capacity has to exist between two 
components, which in dependency of the simulation tool may 
be already included as a property of the node or which also may 
be a separate model component. The basic condition in a 
hydraulic capacity is the balance equation of the hydraulic 
flow 𝑄. 

 

�𝑄𝑖
𝑖

= 0 (1) 

 
where 𝑖 corresponds to the incoming or outgoing volume 

flows. For correlation with the system pressure, the pressure 
build up equation for a hydraulic capacity is used, which is: 

 

�̇� =
1
𝐶𝐻

�𝑄𝑖
𝑖

 (2) 

 
where �̇� represents the pressure change over time and 𝐶𝐻 

represents the constant of the hydraulic capacity. This way, a 
hydraulic network can be modeled. 

One of the main challenges in fluid power systems 
modeling with lumped parameters in contrast to other domains 
can be reasoned by the functional structure of a hydraulic 
model (see Fig. 4). This can be explained using the Contact and 
Channel (C&C) Meta-Modelling approach, which allows the 
consideration of system functions in reference to a component’s 
form [17]. A system function can be fulfilled according to the 
C&C model, if at least two working surface pairs (WSP), which 
are the pair-wise interfaces between components and its 
environment, are interconnected via a channel and support 
structure (CSS), which transfers or stores the system variables 
energy, material or information. In hydraulics, two hydraulic 
components, e.g. two hydraulic cylinders connected via a 
hydraulic line, fulfill a fluid power system function through the 

 
Fig. 4 – Basic Functional Structure of a Hydraulic Model 
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interconnection of the corresponding WSPs, piston and oil, with 
a channel and support structure, the fluid, in this case oil. In 
dependence on the application case, the fluid is able to carry 
over many system functions in a fluid power system, which can 
be divided up into main functions, e.g. energy or signal transfer, 
and auxiliary functions, e.g. lubrication, washing out of 
particles or heat transfer. From a system engineering point of 
view, the fluid enables the fluid power system, thus, to cover 
energy-, material- and information-flows. Additionally, these 
functions can be easily realized in hydraulics, which contributes 
to the fact, that they are commonly applied in fluid power 
systems and therefore, the modeling of the fluid medium and its 
interactions comes in for certain modeling challenges – in 
contrast e.g. to electrical current regarded as a contact and 
channel structure.  

The fluid, in this case oil, has many properties – e.g. 
viscosity, heat capacity or density -, which are influenced by the 
temporary system function, which the fluid takes over. 
Additionally, depending on the environmental and operating 
condition of the system, the state of these properties can vary 
quickly over time. This leads to increased requirements for the 
modeling process. In the first modeling phase of Oberkampf’s 
modeling procedure - the conceptual modeling of a physical 
model -, a clear definition of which effects and which system 
state(s) are to be considered for simulation is striking for the 
quality and validity of simulation results. Based on this 
scenario abstraction, the decision can be derived on which 
modeling components have to be used in which level of detail. 
This directly is in correlation with the quantity of epistemic 
uncertainty. The defined system and environment specification, 
for example, requires a distinct amount of knowledge which 
might or might not exist.  

In the second modeling phase of Oberkampf, the 
mathematical models are created. The concept of modeling a 
fluid power system with lumped parameters is furthermore 
influenced by the experience, that certain properties are 
dominant. In case of flown through components as tubes, hoses, 
valves, throttles, the greatest influence is induced by the 
flowing fluid. This leads predominantly to a mathematical 
description of the models by the pressure losses, which result 
from flow- and friction- properties. In terms of the 
predictability of a fluid power model’s “realistic” behaviour, the 
parameterization of each model has to be regarded in context of 
epistemic uncertainty depending on the “amount” of lack-of-
knowledge. Many simulation tools offer various possibilities to 
model a single aspect of a problem. This is provided for the fact 
that a fluid power phenomenon can be modeled with alternative 
models (or submodels) and that a wide range of predefined 
models already exists. A complete physical system can thus be 
modeled on various ways. The objective to reach high 
prediction capacity of a fluid power simulation, however, does 
not necessarily come with a highly detailed model under 
consideration of all existing phenomena. It rather can be 
achieved by identifying the dominant controlling factors of a 
system and their influences correctly. Within this context, the 
consideration of epistemic uncertainties will help a lot to 

increase the ability to make proper predictions. In this case, this 
shall be achieved by the usage of fuzzy-valued parameters 
which assume the worst-case deviation of those dominant 
controlling factors as uncertainty.  

In order to analyze the propagation of epistemic 
uncertainties in a fluid power simulation system with fuzzy-
valued parameters, the transformation method (TM) of Hanss 
will be used. An overview of the necessary steps and the 
working procedure of the TM will be presented in the following 
section. 

 

THE TRANSFORMATION METHOD OF HANSS 
The transformation method (TM) of fuzzy arithmetic of 

Hanss is a practical implementation of Zadeh’s extension 
principle, which was published in 1975 [18-20] and which 
basically states that any fuzzy arithmetical computation can be 
solved by a multi-dimensional optimization problem. 

The TM uses fuzzy-parameterized numbers to model 
epistemic uncertainties and calculates a fuzzy-valued output of 
a dynamic plant model. Very common for the modeling of a 
fuzzy number 𝑝�, is the application of triangular fuzzy numbers. 
They are denoted as  

 
𝑝� = 𝑡𝑡𝑡(�̅�,𝑤𝑙 ,𝑤𝑟), (3) 

 
where �̅� is the nominal value, 𝑤𝑙  and 𝑤𝑟 the left-hand and 

right-hand worst-case deviation. The fuzzy number can then be 
expressed by a membership function 𝜇𝑝�, which can be 
interpreted as quantification of the possibility that a specific 
interval occurs. Fig. 5 shows an exemplary graph of a triangular 
fuzzy number.  

 
Fig. 5 - Triangular fuzzy number 

 
The fuzzy arithmetic approach can be applied on a 

simulation model represented as a black-box and has been 
published so far for many finite elements-based problems (e.g. 
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[21]), particle problems ( e.g. [22]) as well as its application to 
multi body systems (e.g. [5]).  

The TM takes a five step procedure, which is here 
presented in short on the basis of [23]. These five steps are for a 
system with 𝑡 presumed uncertain, fuzzy-parameterized input 
parameters 𝑝�𝑖 , 𝑖 = 1,2, … ,𝑡 and N fuzzy-parameterized output 
parameters 𝑞� = 𝑡(𝑝�1, 𝑝�2, . . . , 𝑝�𝑁). 

 
1. Decomposition of the input fuzzy numbers according 

to 𝑚 equally-spaced intervals of width ∆𝜇 and the 
corresponding (𝑚 + 1) levels of membership 𝜇𝑗 = 𝑗

𝑚
, 

leading to a set 𝑃𝑖  of intervals 𝑋𝑖
𝑗 of the form 

 
𝑃𝑖  = {𝑋𝑖

(0),𝑋𝑖
(1), … ,𝑋𝑖

(𝑚−1),𝑋𝑖
(𝑚)}  

 
with 𝑋𝑖

(𝑗) = � 𝑎𝑖
(𝑗), 𝑏𝑖

(𝑗)� ,   𝑎𝑖
(𝑗) ≤ 𝑏𝑖

(𝑗) and  
𝑗 = 0,1, … ,𝑚 

(4) 

 
2. Transformation of the input intervals 𝑋𝑖

𝑗 to arrays 𝑋�𝑖
𝑗: 

 
𝑋�𝑖

(𝑗) = ( 𝑥�1 𝑖
(𝑗), 𝑥�2 𝑖

(𝑗), … , 𝑥�𝑟 𝑖
(𝑗)) 

 
with   
𝑟 = 2𝑛    for reduced TM 

 𝑟 = (𝑚 + 1 − 𝑗)𝑛 for general TM 

(5) 

 
Depending on the monotonicity of the simulation problem, 
the TM can be applied in a general, a reduced, and an 
extended form, see Hanss ([10, 24, 25]). 
 
3. Evaluation of the system model in the decomposed 

and transformed form by the output arrays  �̂�(𝑗) 
 
�̂�(𝑗) = ( �̂�1 (𝑗), �̂�2 (𝑗), … , �̂�𝑘 (𝑗), … , �̂�𝑟 (𝑗)), 
 
where the 𝑘th element of the Array is given 
with 

                �̂�𝑘 (𝑗) = 𝑡( 𝑥�𝑘 1
(𝑗), 𝑥�𝑘 2

(𝑗), … , 𝑥�𝑘 𝑛
(𝑗)) 

(6) 

 
 

4. Retransformation of the output arrays  �̂�(𝑗) in 
intervals  𝑍(𝑗): 
 
𝑄  = {𝑍(0),𝑍(1), … ,𝑍(𝑚−1),𝑍(𝑚)} 
 
with 𝑍(𝑗) = [ 𝑐(𝑗), 𝑑(𝑗)] for each 
membership level 𝜇𝑗. 

(7) 

 
5. Recomposition of the output intervals to fuzzy-valued 

output parameters 𝑞�. 
 

EXAMPLE APPLICATION 
In order to demonstrate the effect of assuming epistemic 

uncertainty via the TM, in the following an example of typical 
modeling challenges in the field of fluid power systems 
modeling and simulation will be given. As application, a 
hydraulically preloaded hydropneumatic suspension system is 
chosen.  

According to the modeling phases of Oberkampf, as 
presented in figure 3, the first step for modeling in 
consideration of uncertainties is the built up of a conceptual 
model. This can be achieved, e.g. by a schematic diagram, as it 
can be seen for the hydropneumatic suspension system in 
figure 6. For the preparation of a simulation model, it is 
essential to set the simulation objectives and the quantity and 
quality of phenomena which are to be considered. In order to 
clarify the effect of uncertain modeling and simulation, the 
focus of observation will be restricted to the uncertain modeling 
of the hydraulic lines in this case.  

 
In terms of functional assignment of the hydraulic lines, 

the system boundaries are set by the hydraulic-hydraulic WSP 
at the cylinder chamber and the hydraulic-hydraulic WSP at the 
hydraulic accumulator. These WSPs then are physically 
interconnected by the CSS, the hydraulic line itself. The model 
of the hydraulic line shall consider the functional behavior of 
hydraulic capacity on the one hand, which is capable of storing 
oil, and on the other hand of hydraulic resistance, which leads 
to a pressure loss depending on the flow rate. Thermal behavior 
will be neglected.  

Depending on the modeling specification, the existence of 
uncertainties has to be analyzed. In order to keep the 
application example simple, the uncertain influences will be 
reduced in this paper to selected influences of the oil and the 
pressure losses. The latter will depend on the flow rate. A 
significant influence parameter has to be identified in the next 
step, when the mathematical modeling will be regarded. The 

 
Fig. 6 – Schema of a hydropneumatic suspension 
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uncertainty induced by the model of the oil is influenced by 
many factors again. The fact that the status and the exact type 
of oil might be unknown in an early point of the potential 
development process as well as the exclusion of thermal 
behavior contributes to an increasing model uncertainty. For the 
oil, therefore the bulk modulus 𝐸𝑂𝑖𝑙  and the density 𝜌 are 
chosen as representative uncertain parameters. It is again to be 
underlined that the selection of the uncertain parameters of a 
model always has to be done individually for each model and 
each simulation objective.  

In the next step, the mathematical model will be derived 
from the conceptual one. In the most basic variant, the 
mathematical model consists of the pressure build up equation 
as connection between hydraulic capacity nodes (see eq. 2) and 
of hydraulic resistences, which are represented by orifices. In 
the model, it has to be considered that hydraulic lines consist of 
tubes and hoses. The parameterization of the system has to be 
carried out with substitute values. 

The behavior of the orifices is described by the orifice 
formula. 

 

𝑄 = 𝛼𝐷 ∙ 𝐴 ∙ �
2∙ ∆𝑝
𝜌

, (8) 

 
Where 𝛼𝐷 represents the flow coefficient and 𝐴 represents 

the cross-sectional area of the orifice. Corresponding to the 
assumption above, two types of orifices have to be chosen: 
orifices which are to represent tubes and orifices which are to 
represent hoses. The criterion to express the different flow-
characters is set to the cross-sectional area of the orifice or by a 
so called substitute diameter 𝑑, respectively. As hoses have a 
higher friction, the substitute diameter of the cross-sectional 
area is set smaller than the one of the tubes. The flow 
coefficient is held constant for both types. The volume of the 
hydraulic capacities is set according to the designated model 
representation, which again corresponds to the respective 
volume section for hoses or tubes. The ranges of the worst-case 
deviations for uncertainty in both cases are estimated as a 
deviation of approx. 15 % from the nominal value. This is a 
rough assumption, as there are no measurement results given so 
far. These deviations due to uncertainty are expressed via 
triangular fuzzy numbers. The length of the used tubes is in 
total 1.5m. The length of hoses is 0.5m. 

Additionally, the influence of epistemic uncertainty created 
by the fluid, which is a HLP-oil, shall be taken into account. 
The main drivers for considering the oil-induced uncertainty in 
relation with the system dynamics are here regarded as the 
density and the bulk modulus. The appearing uncertainty 
concerning the oil density is mostly influenced by temperature 
and the air, which is solved in the oil. For the bulk modulus, it 
is important to know, that in this case, the simulation model 
allows the definition of one constant bulk modulus. As there are 
many dependencies, as pressure, air in oil, the inclusion of an 
uncertain factor via a fuzzy parameter shall cover this 
uncertainty and this way, create a “real” equivalent bulk 
modulus. For the determination of the worst-case deviations, it 

is also relevant to notice, that e.g. increasing temperature and 
dissolved air in the liquid decreases the bulk modulus, whereas 
increasing pressure increases the bulk modulus. 

Consecutively, there is a wide deviation to consider. The 
values of the worst-case deviation-ranges were chosen for each 
parameter due to the acting or assumed loads and pressures in 
the system based on elementary hydraulic literature [27, 28]. 
The resulting fuzzy numbers are also implemented as triangular 
fuzzy numbers. 

Table 1 gives an overview of an exemplary 
parameterization of the fuzzy values for the triangular fuzzy 
numbers with an assumed nominal value and the corresponding 
left- and right-hand worst-case deviation. These values later 
will be used for simulation. 

 
Table 1 - Fuzzy representation of uncertain system 
parameters 
 

Parameter 𝒑� = 𝒕𝒕𝒕(𝒙�,𝒘𝒍,𝒘𝒓) 𝒙� 𝒘𝒍 𝒘𝒓 
substitute diameter for tubes �̃�𝑡 
[𝑚𝑚] 

8 1.5 1.5 

substitute diameter for hoses �̃�ℎ 
[𝑚𝑚] 

6.5 2 2 

density 𝜌�  
[𝑘𝑘 𝑚3⁄ ] 

850 50 10 

bulk modulus 𝐸�𝑂𝑖𝑙   
[𝑏𝑎𝑟] 

17.000 5.000 1.000 

 
The complete model as described above is built up in 

AMESim® and then simulated in a co-simulation with 
Matlab® using the GUSMA standard interface for co-
simulation [26]. The five steps of the TM were integrated in the 
toolbox FAMOUS (Fuzzy Arithmetical Modeling Of Uncertain 
Systems) by the Institute of Engineering and Computational 
Mechanics at the University of Stuttgart. FAMOUS is based on 
Matlab® and will be used for the evaluation of the example [7]. 

 
The system in this example was actuated with a sinusoidal 

track profile from the ground (𝑠 = 0) in Fig. 6. The resulting 
displacement path 𝑠 with crisp parameterization consecutively 
also has sinus form. The result after the above mentioned 
fuzzification of parameters is shown qualitatively in Fig. 7. The 
variation of the color is an indicator for the membership level 
of the corresponding fuzzified output parameter. The darker the 
color, the higher is the possibility that the output parameters 
occurs at that point. For each time step, a membership level of 
the output parameter is given. 

Due to the decomposition of fuzzy input numbers in the 
TM, an additional result part of a fuzzy arithmetic calculation is 
the sensitivity analysis of all fuzzified input parameters for each 
output parameter. It can be expressed by its absolute or relative 
sensitivity. This can be seen for the force output in Fig. 8. It can 
be noticed that the influence of the uncertain density parameter 
is comparatively high – both in relative and in absolute 
perspective.  
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Fig. 7 - Fuzzy-valued force of cylinder and displacement of 
piston 

 
 

 
Fig. 8 - Absolute and relative uncertainty measures for 
Force of cylinder 

 
 
 

DISCUSSION 
The results in Fig. 7 show an extraction of the fuzzified 

output of the simulation. Also Fig. 8 shows the relative 
influence of each fuzzy parameter on the output.  

In comparison with the crisp-valued result it can be seen, 
that in this parameter case, the fuzzy-output does not have a 
wide deviation. As a consequence, the range of epistemic 
uncertainty, which was given through the fuzzified input 
parameters, does not have a striking influence on the system 
deviation. Of course, the ability of predicting the real systems’s 
behavior with a fuzzified simulation result is directly affected 
by the worst-case assumption and how realistic the latter is. 
Exaggerated worst-case deviation at the input would lead to 
extreme output ranges. Using substitute models, as it is 
common in fluid power simulation, it is until today inevitable to 
apply the experience of an analyst or engineer for the modeling 
and simulation process. The implication of epistemic 
uncertainty however is a useful method to improve the validity 
and quality of simulation results and cover the real system’s 
potential. 
 

CONCLUSION AND OUTLOOK 
Simulation of fluid power systems with lumped parameters 

has been established as a tool to increase efficiency in product 
development. One main challenge in the modeling and 
simulation process is represented by the lack of knowledge 
about the system and its boundary conditions due to high 
system complexity or simplifications, which increase the effort 
of correct parameterization. The latter given as an important 
reason for the deviation of the simulated system’s behavior to 
the real one, it is important for the quality and validity of 
simulation results to be aware of simulation errors and 
uncertainties.  

The consideration of epistemic uncertainty is promising, if 
lack of knowledge is the main reason for the deviation of 
simulation from reality. Especially in the conceptual and 
mathematical modeling phase, epistemic uncertainties are 
vitally important und were evaluated in this paper in terms of 
their appearance in modeling of fluid power systems. 

Using fuzzy arithmetics, one possibility to analyze the 
propagation of epistemic uncertainties is via the transformation 
method by Hanss. It was shown, that depending on the 
implemented worst-case deviation of input parameters the 
output variables vary. 

Until now, the parameterization of fuzzy values is a 
empirical process due to long simulation times and many 
recursions. This process of parameterization still shows 
potential for optimization. 

The parameter sensitivity analysis, which is a result of the 
transformation method, shall be evaluated in the future to 
derive consequences and recommendations for action for model 
simplification.  
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NOMENCLATURE 
CFD   Computational Fluid Dynamics 
C&C    Contact and Channel 
WSP    Working Surface Pair 
CSS    Channel and Support Structure 
TM    Transfer Method 
𝑄  Hydraulic volume flow 
�̇�   pressure change over time 
𝐶𝐻  constant for hydraulic capacity 
tfn    triangular fuzzy number 
�̅�    nominal value of the fuzzy parameter 𝑝�  
𝑤𝑙     left-hand worst-case deviation 
𝑤𝑟    right-hand worst-case deviation 
𝜇𝑝�    membership level of the fuzzy number 𝑝�  
(∙)�     fuzzy-valued quantity 
𝑝�𝑖     fuzzified-valued input  
𝑞�𝑟   fuzzified-valued output  
𝑚   decomposition number 
𝑃𝑖    set of decomposed intervals representing 𝑝�𝑖  
𝑋𝑖
𝑗   one element of 𝑃𝑖  

 𝑋�𝑖
𝑗  parameter array of the TM associated to 𝑃𝑖  
𝑥�𝑘 𝑖

(𝑗)   one element of  𝑋�𝑖
𝑗 

𝑄𝑟   set of decomposed intervals representing 𝑞�𝑟 
 �̂�(𝑗)   parameter array of the TM associated to 𝑄𝑟  
�̂�𝑘 (𝑗)   one element of  �̂�(𝑗) 

𝜌    density 
𝐸𝑂𝑖𝑙     bulk modulus 
𝐴  cross-sectional area of orifice 
𝛼𝐷   flow coefficient of orifice 
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