DAIMLER

Hybrid at Daimler Trucks – Technology for the world

Current status and working direction

4. Fachtagung Hybridantriebe für mobile Antriebsmaschinen Karlsruhe, 20. Februar 2013 Stephan C. Treusch

S. Treusch - hybrid at Daimler - KIT Febr. 2013 - final

Contents

1	Daimler and Daimler Trucks
2	Hybrid at Trucks – System concept, Vehicles and Organization
3	Engineering working direction – Modularity, Components and Controls
4	Other Challenges – Customer and standardization
5	Summary

Daimler consists of five divisions

Note: 2011: Revenue Graun € 1865 + bo; Econloyers; 271,370; sales organization 49,699, Corporate/Others 5,836

Daimler Trucks worldwide vehicle portfolio

Trucks with high variety: Actros with more than 2.500 base variants

Plus countless further combinations of fuel economy relevant options (e.g. aero devices, axle ratios, tranmission options, ...)

In total more than 4.000 variants available for all MB Trucks products

* not all theoretically possible variants are actually offered

** GVW = Gross vehicle weight

Trucks are international: China as the biggest market worldwide, every second truck is sold there

Trucks are clean: In the past 20 years, emissions have been reduced by almost 100 % - what's next?

(1) Average Truck before EURO1S. Treusch - hybrid at Daimler - KIT Febr. 2013 - final

Contents

1	Daimler and Daimler Trucks
2	Hybrid at Trucks – System concept, Vehicles and Organization
3	Engineering working direction – Modularity, Components and Controls
4	Other Challenges – Customer and standardization
5	Summary

Fuel consumption is influenced by different things truck technology is only one lever

As conventional options are becoming scarce, we investigate alternative drivetrain options as well

*) Synergies within Daimler

S. Treusch - hybrid at Daimler - KIT Febr. 2013 - final

Full electrical drive not an option for trucks in the near future due to low energy density of batteries

Range	Diesel	100% electric with Li-Ion battery
Vito	75 Liter 64 kg 800 km r	ange 0.4 m ³ 0.6 t 36 kWh ange 80 km/h V _{max}
500 km 12 ton distribution	100 Liter 85 kg	2,6 m ³ 5,2 t
3000 km 40 ton Iong-haul	990 Liter 837 kg	26 m ³ 52t

DAIMLER C

Evaluation of hybrid architectures lead to P2 as most promising option for Trucks

Parallel and Dual-Hybrids tested

Concept		Starter Function	Electric Starting	Recuperation	Boosting	Assembly/ Complexity	Shifting w/o traction interruption	All wheel drive	ICE operating in the efficient area	E-Drive Climbing Performance	Overall Evaluation
P1	̶ [™] ∎# Soor	+		-	++	++	-	-	-		3 -
P2		+	+	+	++	++	-	-	o	++	7+
P1/2		+	+	ο	++		-	-	++	+	3 +
P3		-	o	**	+	++	+	-	o	-	4 +
P4	∞∎∭₩	-	o	++	+	+	+	+	o	-	4 +
P2/3		+	++	++		<u> </u>	+	.	+	1	8.+
Dual Hybrid		+	++	**			+	0	++	o	2 +

 The P2/3 design is less economical than the P2 design.

The output of the P3 el. machine (after the transmission) is barely sufficient to exploit the advantages of serial driving and electrical starting. These advantages cannot compensate for the increased weight and costs.

S. Treusch - hybrid at Daimler - KIT Febr. 2013 - final

Broad range of vehicles with hybrid technology

S 400 HYBRID

Fuso Canter Eco Hybrid

Vision S 500 Plug-in HYBRID¹⁾

Freightliner Business Class M2eHybrid

E 300 BlueTEC HYBRID²⁾/E 400 HYBRID

Atego BlueTec Hybrid

Citaro G BlueTec Hybrid

Freightliner CC Walk-in Van Hybrid

Atego BlueTec Hybrid is the first hybrid series vehicle available in Europe

Till today, about 120 vehicles in the hands of customers

- P2 Hybrid
- 44 kW E-Motor, 420 Nm
- 1,9 kWh Li-lon battery
- First European series hybrid truck
- Contribution to sustainable mobility
- Fuel Savings of 10-15%
- Significant CO₂-, NOx- und particle emission reduction
- Significant reduction of noise emissions
- Increases know-how in alternative and innovative powertrain applications in Mercedes-Benz Trucks

DAIMLER OF BURNER

New Canter TF EcoHybrid represents the second generation of hybrid products at Daimler Trucks

canner Eco l'Ambrid

From 2006:

2006

- Canter TD EcoHybrid introduced into market
- More than 1.000 vehicles sold to customers
- First hybrid truck available with Li-lon battery
- 15-30% improved fuel economy in Japanese applications

2011

From 2008:

> 2008

- 10 TD Canter EcoHybrid vehicle test fleet in London
- About 450.000 km total testing achieved
- Up to 15% better fuel economy

🕺 токуо мотоя show 2011

NEW Canter TF EcoHybrid

- All-new hybrid powertrain based on new Canter TF
- Significant progress
 - Improved performance (Power, Fuel economy)
 - Improved Comfort
 - Reduced weight
 - Reduced costs

From 2012

Highlights – "DUONIC with Hybrid Motor" Wins 2013 RJC Car of the Year Special Award

- First in History for Commercial Vehicle Manufacturer to Win One of RJC Car of the Year Awards.
- LIFT HEV project will come to QG0 till at the end of this year.

RJC: Automotive Researchers' & Journalists' Conference of Japan

Broad HEV portfolio as technology base for future series vehicles – more than 5.500 sold as of today

To ensure the worldwide market success for Trucks, a global development organization is essential

More than 5.000 engineers worldwide working together on future products and innovations

Global Hybrid Center Trucks (GHC) delivers hybrid trucks to all Daimler Truck brands worldwide

GLOBAL : All Daimler Truck brands worldwide

HYBRID: Target configuration is P2
 Diesel-electric Hybrid System

• **CENTER** (Trucks)

- From light duty truck (3,5 tons) to heavy duty truck (40 tons)
- Standardized powertrain
- Focus is main high volume models (and a possible use in bus coach)

- Provides hybrid systems with
 - standardized, modular components
 - common E/E interface for easy vehicle integration
- Provides system functionality for application & calibration in each regional project
- Leverages global presence of Daimler Trucks for new technology applications
- Realize synergies within Daimler

Daimler Trucks with integrated worldwide hybrid development to realize synergies

Only the integration of all worldwide hybrid activities in one organization leads to synergies in budget and cost. If this is done right, this allows at the same time vehicles with market and brand-specific benefits.

Collaboration and alignment with key-partners leads to further improvements.

Development and application of vehicles

A successful global R&D network requires strong intercultural skills

私たちは、三菱ふそうの国際的な経営陣として

三菱ふそうとダイムラークライスラーが持つ異なる文化・ビジネスモデル・伝統を互いに認め、尊重するが、 新しい三菱ふそうを共に築くために、異なる文化的背景を持つ相手に対応する際は以下のことを考慮する。

日本人以外/ダイムラークライスラー側へのヒント:

- 1) ディスカッションでは、まず相手の言い分を聞く。
- 2)注意:沈黙は必ずしも合意ではない。
- 3)注意:自分ではアイデア・提案・意見のつもりの発言が、相手には命令と受け取られているかもしれない。
- 4)相手の論旨の背景を考えてみること。
- 5)結論を急がずに、オープンで同等な立場でのディスカッションを心がける

日本人/ふそう側へのヒント:

- 1)言葉にしなければ伝えたことにはならない。
 (自分の気持ちや言いたいことを相手が察してくれると期待してはいけない。)
- 2) 自分の真意を伝えること。(本音と建前)
- 3)報告をする際は、まず結論から始めること(そのあとに説明)。
- 4)よくわからない時は質問(確認)すること。
- 5) ふそうにいるDC派遣者もふそうの一員。
- 6)親(株主)に対しても自分の意見は明確に説明すること。

>英語はドイツ人にとっても日本人にとっても外国語 >CVDのビジネスユニットは「兄弟」(同じレベルのパートナー)であり「親子」ではない。

Contents

1	Daimler and Daimler Trucks			
2	2 Hybrid at Trucks – System concept, Vehicles and Organization			
3	Engineering working direction – Modularity, Components and Controls			
4	Other Challenges – Customer and standardization			
5	Summary			

Platform and module strategy to leverage scales in powertrain and vehicles of Daimler Trucks

Three systems can cover all Daimler Trucks HEV – components partly scalable

High Power System (HPS) HV-Battery Vehicle CAN 1. JUBIN CAN G211 AMT e-motor P/T CAN CPC x MCM Mid Power System (MPS) TCM G90 AMT Inverter e-motor Vehicle CAN **HV Battery** Light Power System (LPS) DATAMT engine control e-motor TCM & HCU Inverter

Due to yearly mileage, CO2 reduction effect of longhaul HEV is up to 5 times higher than in distribution

Hybrid systems consist of different elements

- A hybrid system consists mainly of HV components, cooling and control elements
- Some of these are already today available commodities (like cooling systems), others will be with the increased volumes in the automotive industry (e.g. HV cables, eMotors)
- Only a few are critical for best performance

DAIMLER

Various and partly opposing requirements have to be considered for the specification of the HV-Battery

The HV-Battery is a complex component, combining electrical, chemical, mechanical and performance elements. With the boundary conditions in a truck, the right combination has to be defined.

Simulation process to evaluate feasible system configuration

- Energy Analysis: simulation tool for the basic dimensioning of hybrid systems (dimensioning of power and energy).
- I2t limitation study: process to consider battery limitations and lifetime restrictions
- · Consideration of route specific driving/recuperation characteristic

S. Treusch - hybrid at Daimler - KIT Febr. 2013 - final

Depending on circumstances, the fuel effect of a hybrid may even be negative

A hybrid for truck must be carefully selected depending on its usage!

The hybrid control strategy is a major lever for defining the success of a hybrid truck

Most relevant features for HD hybrid differ significantly from other applications

Future hybrid functions have to consider engine-off and PHEV functionality

- The focus of hybrid development is today on classic hybrid functionality. Advanced hybrid functions will consider the shut-down of the Engine
- pZE and plug-in operations available in cars, and partly for LDT.
- Additional functionality might be required by the customer (ePTO, ZE), or by law (LEZ-ZEZ).
- In addition, synergies with existing components of other Daimler BU might be possible.

There are many topics than can be evaluated once the hybrid system is realized Hybrid relevant C

Contents

1 Daimler and Daimler Trucks	
2 Hybrid at Trucks – System concept, vehicles and Organization	
3 Engineering working direction – Modularity, Components and Con	trols
4 Other Challenges – customer and standardization	
5 Summary	

Besides technical challenges, different buying motivations exist - only one is stable for development

- Customers buy a HEV Truck for different reasons. They want to be eco-friendly (e.g. green image), they have to (out of legislation or access restrictions) or because of a monetary benefit (subsidies or by better TCO).
- Most trucks are bought to make money. The decision is simple:
 - how much does it cost?

DAIMLER

- How much do I get (in a reasonable time)?
- Besides legislation effects, a hybrid truck has to deliver real monetary benefit to get high volume.
- At the same time, the usage of the vehicle should not be restricted by the system (same durability, payload, functionality, performance, ...).

• As a result, a hybrid system has to be integrated in a way, that keeps the capability of the truck unchanged.

Das Grund-Dilema einer globalen Elektromobilität sind die unterschiedlichen, hundertjährigen Elektizitätsnetze

Die Fahrzeughersteller entwickeln die Fahrzeuge in unterschiedlichen Szenarien

Source: Daimler Corporate Standardization

Die Einigung auf wenige internationale Standards reduziert die Entwicklungs- und Produktions-Kosten

Region	Aktuelle Situation AC/DC Fahrzeug Inlet				
- ST	1 IEC Combo 1 (AC + DC) passend für IEC Type 1 (AC) und Combo 1 (AC + DC) Connector				
	2 IEC Combo 2 (AC + DC) passend für IEC Type 2 (AC + DC) und Combo 2 (AC + DC) Connector	2			
	3 IEC Type 1 (AC)	0			
	Solutional Standard (AC) GB Part 2, ähnlich IEC Type 2Mational Standard (DC) GB Part 3	2			
	National Standard (AC) National Standard (DC) Ähnlich IEC Type 1 Annlich CHAdeMO	0			
Anzahl Varianten	8	2			

Source: Daimler Corporate Standardization

Contents

1	Daimler and Daimler Trucks
2	Hybrid at Trucks – System concept, vehicles and Organization
3	Engineering working direction – Modularity, Components and Controls
4	Other Challenges – customer and standardization
5	Summary

By continuously reducing cost and increasing the hybrid benefit, the magic moment is close

To reach the "magic" moment", two levers have to be used:

- The **monetary benefit** can be influenced mainly by vehicle development and improvements in operations strategy and vehicle integration. As shown with the different models of Canter EcoHybrid, the performance can be significantly improved by fine-tuning (with unchanged system hardware and cost).
- The system **costs** are directly linked to the volume of hybrid components that depend on the development of the automotive industry and the component specification. Governmental subsidies can help to bring volumes up.
- Today, the magic moment can only be reached with subsidies. This will drastically improve in the next few years.

*: depending on vehicle and application

DAIMLER

S. Treusch - hybrid at Daimler - KIT Febr. 2013 - final

Summary

Trucks have specific boundary conditions

- Money driven business (TCO)
- Weight and packaging sensitive
- High variety in vehicles and usage worldwide

Key success factors for hybrid systems in Trucks

- Optimized, modular system architecture and cost
- Individual operating strategy and seamless vehicle integration
- Strong network for synergies in functions, budget and time
- Target is the best performance/cost ratio!

Boundary conditions / challenges

- Most challenging component: HV battery
- Biggest uncertainty: governmental / City administrations priority
- Standardization as key driver for component cost and volume

Outlook

• HEV is the future for Trucks. But success and schedule are not in engineering responsibility

Daimler Trucks We are Shaping Future Transportation ...

