Hybride Verbunde

Hybrid laminates offer the potential of further improving the already outstanding mechanical properties of fiber reinforced composites. Examples are found in the increased fatigue life, the higher damage tolerance during impact and the tailored damping behavior. In order to accurately predict the structural behavior of hybrid laminates and components, we not only deploy appropriate complex material models, but also use efficient modeling strategies on the laminate scale. This ensures a favorable trade-off between forecast quality and simulation time. Currently, we model and analyze the optimized damping behavior of lightweight structures with elastomer layers embedded in the laminate.

 

Research focus
  • Prediction of the vibrational behvior of laminates with viscoelastic layers
  • Simulation of different damage types within the laminate
  • Development of analytical methods fort he rapid analysis of different laminate configurations

 

Research projects
Contact

M.Sc. Alexander Jackstadt
Tel.: +49 721 608-45365
Email: alexander.jackstadt∂kit.edu

 

 

Bild FAST-LB
Finite element model of a hybrid CFRP/elastomer/metal laminate