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Abstract— Nowadays more and more driver assistance sys-
tems are implemented in cars. By adapting the system to the
driving style of the driver, the acceptance of the driver to
such a system could be enhanced. In this paper a system for
online driving style recognition is designed. It is implemented in
Matlab/Simulink and uses fuzzy logic for identifying the current
driving style. It is fully parameterisable via a central parameter
file and could therefore be adapted to nearly every car. The
recognition was tested by using a vehicle dynamics simulation
with 68% correct classifications over time.

I. INTRODUCTION

A. Motivation

The driving style is important in many fields of applica-
tion. It is used in accident research and road construction.
The most relevant field for the use of a driving style recogni-
tion system is the individual adaptation of driver assistance
systems. There are many reasons why the knowledge of the
driving style is important. Firstly, for the energy consumption
of a car, especially an electric car, the driving style is a
very meaningful factor. A sporty driving style with higher
velocities and higher accelerations results in an increasing
energy consumption and a calm driving style with lower
velocities and lower accelerations results in a decreasing
energy consumption. The second application where the driv-
ing style is useful is the parametrization of driver assistance
systems. When the driving style is known, the systems could
be adapted to the driving style. For example, the accelerations
set up by a cruise control system could be adapted to
the desired accelerations. Thereby the acceptance of the
driver for a specific system could be enhanced. With higher
acceptance the driver uses the system in the long term. This
could enhance the driving safety, too.

B. State-of-the-Art

As mentioned above, driving style recognition is used in
different fields of application. Examples from different topics
are briefly presented below. Friedrich and Ziegler present a
method for automatic adaption of a driver assistance system
to the driving style in [5]. While it is a patent the statements
are very unspecific. That is why, this work describes most
methods given in the literature regarding functionality and
structure. The intent of the inventor was a targeted adaption
of driver assistance systems to the driver for enhancing
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driving safety and comfort.
Deml et al. first try to capture the term driving style in
[3]. It is stated that lateral and longitudinal acceleration
behavior is suitable for classification of the driving style.
But the authors also say that there are situational influences
on the driving style. The acceleration values therefore may
not be used isolated from the given driving situation. Based
on the theoretical study, a field experiment with 26 subjects
found significant parameters to distinguish between different
driving styles. The conclusion was, that the acceleration
behavior is a suitable parameter when the driving situation
is taken into account.
Aljaafreh et al. differentiate between two driving styles in
[1]. The authors distinguish between normal and aggressive
driving. The readings of a 2-axis-accelerometer and the
speed are used as inputs. The inputs are fed into a fuzzy
inference system. The membership functions, which create
sharp outputs from the inputs, are inferred from real recorded
data.
Ly et al. use inertial sensors to identify the driver in [8].
The system distinguishes between two drivers on basis of
parameters from inertial sensors, like accelerations, vehicle
speed, gyrometer output, steering angle, throttle value and
brake pedal value. They use an event based method with two
different learning algorithms. Three types of events (Braking,
Acceleration, and Turning) are defined and identified in the
data. The experiments were done with a test car and two
different drivers on different routes.
Johnson and Trivedi use a smartphone to identify the driving
style in [6]. The driving style is divided into two categories in
this paper: “typical” (non-aggressive) and “aggressive”. All
gathered data from different sensors inside the smartphone is
fusioned and processed internally and no external processing
is needed.
An example from the field of accident analysis and preven-
tion is given in [2]. The authors did two studies in which
they revealed factors for the driving style and the associations
between them.
Plöchi and Edelmann give an overview of different driver
models in [9]. They concentrate on the interest of engineers
and they notice that there is a wide range of driver models,
because the demands on the models are different for each
application. Not only different driver models but rather
different methodical modeling approaches are discussed.

C. Contributions of this work

The system provided in this paper is an online system.
That means it works while driving. It differentiates between
different driving situations by using a signal from the naviga-



tion system called road class. It uses only data available on
the CAN bus (controller area network) of the vehicle. That is
why, the system could be used in nearly every car, no matter
if it is a car with a combustion engine or an electric car.
For full spectrum of functionality the car has to be equipped
with an ACC1 system. Until the now, the system only works
in simulation.

II. FUZZY LOGIC

Fuzzy logic is a method which uses fuzzy sets that allow
to one model states which were not possible with classical
binary logic. With fuzzy logic it is possible to implement
rules from type IF X AND Y THEN Z, while the X, the
Y and the Z could be described in natural language. Before
these rules could be used, all input signals have to be con-
verted into so called linguistic variables. This step is called
fuzzification. Different membership functions are used to do
this. Usually easy triangular or trapezoid functions are used
to keep the computational cost low. After the transformation
into linguistic variables, the inference rules could be applied
and after that a so called defuzzification is needed to generate
a sharp output value. A graphical representation of the basic
fuzzy logic process can be found in Fig. 1. The most basic
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Fig. 1. The Fuzzy logic process

form of fuzzy logic is used to generate a characteristic value

1ACC stands for adaptive cruise control, a system which automatically
controls the speed of a vehicle. With a radar sensor leading vehicle is tracked
and the vehicle speed is controlled in order to maintain a safe distance.

for each parameter. More Information about Fuzzy Logic can
be found in [11] or [10].

III. DRIVING STYLE RECOGNITION SYSTEM

A. Terms and definitions

In literature there are definitions for the terms driver type
and driving style, but they are often used interchangeably
and different literature uses different definitions. That is why
there is no clear definition in general for these terms. In the
context of this work it is assumed that the driver type is
the physical constitution and the characteristics of the driver
itself. There are implications from the driver type on the
driving style but the two terms don’t mean the same. The
driving style is the way of executing the driving task. It
is determined by the driver type, the driver condition, the
driving situation and the purpose of the trip. The impacts on
the driving style are given in Fig. 2.
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Fig. 2. Impacts on the driving style

There are different possibilities to distinguish between
different driving styles. The scale could be continuous or
discrete. In literature discrete scales vary between two and
eight levels. In this work a discrete scale with three levels
(sporty, normal, comfortable) is used to distinguish between
different driving styles. This allows differentiation with high
selectivity.

B. Structure of the System

As the driving style strongly depends on the driving situ-
ation it is necessary to distinguish between different driving
situations. In this work this distinction is realized through a
signal road class which is provided by the navigation system
of the car. The navigation system sends a different value
of the signal for dirt track, urban streets, rural roads and
motorways. When driving on a dirt track, the system does not
try to recognize a driving style, because it is not necessary.
On dirt tracks the driver usually tries not to damage the car
and take it back on paved roads. For urban streets, rural roads
and motorways the system tries to recognize the driving
style. The driving style is traced independently for each
kind of street and the driving style recognized for the actual
driven street is determined. For every road class there is a
different subsystem for tracing the driving style. So different
parameters can be incorporated for every road class. The time
gap for example is a very important parameter on motorways
or rural roads but on urban streets the time gap is often
dictated by traffic and therefore it is not a suitable parameter
for the driving style on urban streets. An overview of the



parameters that are used in different situations is given in
TABLE I. The parameter selection is based on literature and
the availability of the parameters on the CAN bus of cars.

TABLE I
CONSIDERED PARAMETERS FOR EACH ROAD CLASS

road class considered parameters

dirt track • none

urban street
• longitudinal acceleration
• deceleration
• speed

rural roads

• longitudinal acceleration
• lateral acceleration
• deceleration
• speed
• time gap

motorways

• longitudinal acceleration
• speed
• time gap
• ACC activation

The general structure of the system is given in Fig. 3 In
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Fig. 3. Top-level structure of system

fact there is a fifth subsystem which is not depicted in the
picture. It is used if the driver drives on motorways with
activated ACC. In this case the only evaluated parameter is
the ACC speed setting. This subsystem differentiates between
two situations. If there is no speed limit on the motorway
(for german motorways, there is no general speed limit,
only a so called advisory speed limit) it checks if the ACC
speed setting is set between specified thresholds. It is only
evaluated, if the actual speed is above a minimum speed for
motorways. If the speed is below this minimum speed, it
is considered that there is a special situation like a traffic
jam for example and the driver is not able to determine the
speed by himself. According to the speed and the thresholds
the driving style coefficient (a value between one and three,

one for comfortable and three for sporty) is set to the
suited value. The second situation is when a speed limit
is present on motorways. When the desired ACC speed
setting is set above the speed limit, the driver is directly
classified as sporty. When the desired speed is below the
minimum speed for motorways, the driver is classified as
normal, because he does not determine the speed himself. If
the ACC speed setting is between this minimum speed and a
specified threshold, the driver is classified as comfortable. If
the ACC speed setting is below the threshold but below the
given speed limit for this road section the driver is classified
as normal. The concept for the driving style classification
could be seen in Fig. 4.
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Fig. 4. driving style classification with ACC speed setting

The different subsystems are triggered with the respective
value of the signal ’road class’. When a subsystem is not
active the output holds the last value. Inside a subsystem
some parameters are classified as events, which are triggered
when certain values are reached. For events like a longitudi-
nal acceleration event, a memory block is used to save the
maximum value of the acceleration from an event for the last
ten events. The second biggest value from the memory is then
fed into the fuzzy logic process to generate a characteristic
value for the driving style. The second biggest value is used
because the biggest value could easily be an outlier. In order
to determine parameters like the speed difference a kalman
filter (more information in [7]) is used, which generates
a weighted average for a given number of samples. The
weight of the older values is decreased exponentially. This
average is then also fed into the fuzzy logic. All values
from the different fuzzy logic blocks are then fed into the
block calculation driving style coefficient, which calculates
the driving style coefficient for the respective subsystem. The
coefficient consists of two parts. The maximum value of all
outputs of the fuzzy logic blocks and a weighted average
from all outputs of the fuzzy logic blocks. These weights
could be modified in a parameter file, so that every parameter
could be weighted as needed. The two parts can also be
weighted arbitrarily. The system could thus be adjusted to the
user’s needs very easily in order to achieve high performance.
The structure for the subsystem ’rural road’ is given in Fig.
5 as an example for all subsystems. Generating the output
driving style coefficient is then executed. The two parameters
for weighting the maximum value, the weighted average and
the abbreviations used in the formulas are given in TABLE
II. Using the values and parameters from TABLE II the
calculation of the driving style coefficient works as shown
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Fig. 5. structure of subsystem ’rural road’

in formula 1.

drstyle =wmax ·max(p1, p2, . . . , pn)

+ wavg ·

n∑
i=1

wpi · pi
n∑

i=1

wpi

(1)

TABLE II
WEIGHTING PARAMETERS

name of parameter abbr. meaning and values
parameter
values\inputs

pi outputs of the fuzzy logic block for
each parameter. Numerical values
between 1 and 3.

number of
parameters

n numbers of parameters used to
classify the driver in the according
subsystem.

parameter weights wpi weights for each parameter to gen-
erate the weighted average.

weight max wmax weighting for the maximum value
for driving style coefficient in sub-
system.

weight avg wavg weighting for the weighted average
value for driving style coefficient in
subsystem.

driving style
coefficient

drstyle Output of the block. A numerical
value between 1 and 3.

In the block ’signal selection and signal control’ the
correct signal is chosen regarding the actual road class.
Also, some checks are made to assure that the outputs won’t
change with every calculation step or that the output signal
is not switching from for example sporty to comfortable in a
single step. After generating the last signal, threshold values
are used to determine the final output driving style signal.

The signal is defined as ’1’ for comfortable, ’2’ for normal
and ’3’ for sporty.

C. Implementation

The system is implemented in Matlab/Simulink. The fuzzy
logic is realized using the fuzzy logic toolbox. The different
subsystems are implemented as enabled subsystems. They are
only active, if the road class signal has the corresponding
value for the respective subsystem. Otherwise they hold
their old value of the output until they are activated again.
This allows the subsystems to go on with the old value on
reactivation.

IV. SIMULATION RESULTS

To verify the system, simulations were conducted using
the platform CarMaker from IPG. It is a simulation tool for
global vehicle dynamics. It is customizable with our own
models which could be integrated via Matlab/Simulink or
directly over a C interface. In case of this work, the driving
style recognition is integrated via a simulink model as a so
called vehicle control model.

A. Setup and parameters

For the tests a course with a length of about 23 kilometers
is used. It consists only of rural roads and urban streets. So
only the subsystems for these two kind of roads can be tested.
While there is no traffic implemented yet, the output for time
gap2 on rural roads was not used in the calculation for the
driving style coefficient in the subsystem for rural roads. This
is done by setting the respective weighting factor to zero.

A model of a battery electric sport car is used for the
simulations. It is an accurate model with real values for the
suspension and axle kinematics. This is important especially
for the lateral dynamics. To imitate a real driver with high
reproducibility and configurable parameters the IPG-Driver
is used for the simulations in CarMaker. It’s a parameteris-
able driver model, which operates the car during simulation.
The changeable parameters are the maximum lateral and
longitudinal acceleration, the maximum deceleration, the
cruising speed, the pedal changing times and a coefficient
how the driver cuts the curves. The used parameters for the
simulations in this work can be found in TABLE III.

As there is no possibility to change the parameters during
a simulation run, three simulations where run, one for each
driver parameter set. The results from these simulations
where split at distinctive points (points with velocity of 0 m

s ).
The parts of the logs are combined in different constellations
to generate test runs where the driver parameters change at
these distinctive points. These combined results are then fed
into the system, which generates the respective driving style
coefficient. This allows to check if the system can identify a
change in the driving style during a test run.

The system was parameterised using a base configuration.
The most important parameters are shown in TABLE IV.
All parameters are configurable via a central parameter file.

2The time gap, also called headway is a measurement of the distance or
time between vehicles in a transit system.



TABLE III
DRIVER PARAMETERS USED IN SIMULATIONS

name of parameter used value unit

comfortable
longitudinal acceleration 2 m

s2

deceleration -3 m
s2

lateral acceleration 3 m
s2

cruise speed 70 km
h

speed deviation at speed limits -15 km
h

normal
longitudinal acceleration 3 m

s2

deceleration -4.5 m
s2

lateral acceleration 4.2 m
s2

cruise speed 100 km
h

speed deviation at speed limits 0 km
h

sporty
longitudinal acceleration 5 m

s2

deceleration -7 m
s2

lateral acceleration 6.5 m
s2

cruise speed 115 km
h

speed deviation at speed limits +15 km
h

This makes it easier for an engineer to apply the system for
different vehicles.

B. Results

In the following part, the results for the simulations are
found. Three different mixes of the simulations for the three
driver parameter sets were created. The dashed blue line in
the plots is the specified driving style in the simulations. The
red line is the driving style which is identified by the system.
For evaluation, three cases are distinguished. If the identified
classification is the same as the driving style specified in the
simulation it is called a correct classification. If
the identified classification is next to the specified driving
style (e.g. normal specified and comfortable identified) it
is called a differing classification. A wrong
classification is when the specified driving style is
sporty and the identified classification is comfortable or vice
versa.

In the first test drive shown in Fig. 6 the driver parameters
were set to normal at the beginning, sporty afterwards, then
normal again and comfortable in the end. In the second
test drive shown in Fig. 7 the driver parameters were set to
comfortable at the beginning, sporty afterwards, then normal
and sporty again in the end. In the third test drive shown
in Fig. 8 the driver parameters were set to normal at the
beginning, comfortable afterwards, then sporty and normal
again in the end.

In all figures the driving style coefficient follows the
driving style defined in the simulation, except some small
sections. There are nearly no wrong classifications,
especially in mix 2 where there is no wrong classification at
all. Also, it can be seen that the driving style coefficient

TABLE IV
SYSTEM PARAMETERS USED IN SIMULATIONS

name of parameter used value unit

rural road
threshold acceleration event 0.3 m

s2

threshold deceleration event -0.4 m
s2

threshold lateral acceleration event 0.4 m
s2

minimum duration acceleration
event

1 s

minimum duration deceleration
event

0.5 s

minimum duration lateral accelera-
tion event

0.5 s

weighting factor for the maximum
value

0.2 -

weighting factor for the weighted
average

0.8 -

urban streets
threshold acceleration event 0.4 m

s2

threshold deceleration event -0.4 m
s2

minimum duration acceleration
event

0.5 s

minimum duration deceleration
event

0.5 s

weighting factor for the maximum
value

0.2 -

weighting factor for the weighted
average

0.8 -
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Fig. 6. Results for mix 1

follows the specification mostly with a small time gap. This
is the case, because the system has to determine the new
driving style before it could output it. In mix 2 the wrong
classification at the beginning exists, because the system has
a timer which sets the driving style coefficient to normal for
the first 60 seconds. This time is used to prefill the filters
and memory in order to provide consistent values. Without
this timer, the classification in mix 2 would be even better.

The final complete results for the tests of the system can
be found in Fig. 9. About two thirds of the time, the system
identifies the right driving style according to the settings in
the simulation.
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Fig. 7. Results for mix 2
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Fig. 8. Results for mix 3

V. CONCLUSIONS AND OUTLINE

A. Conclusions

A system for identifying the driving style while driving
was implemented and tested via simulations. Though the sys-
tem was used in a basic configuration without any adaptions
to specific car parameters, the results were quite good with a
correct classification percentage of about 68% and a wrong
classification percentage of only 2%. This is a satisfying
result for the first test of the new implemented system. Since
the output should not be used for safety-critical systems this
is sufficient to test the system in a real vehicle.

B. Outline

In the future, the system has to be verified with traffic to
check if the parts for the time gap work fine and to figure
out if this could help in making the results better, especially
to create less differing classifications. Also, a test run for
motorways has to be implemented to verify the respective
subsystem.

If a vehicle with a prototyping control unit is available
the system could be flashed onto the control unit to verify
the system under real ambient conditions in real traffic. The
system could then be adapted to the used car to improve the
percentage of correct classifications.
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Fig. 9. Results

VI. ACKNOLEDGMENT

The work presented in this publication is performed as
part of the project ”e-generation key technologies for the
next generation of electric vehicles” which is supported by
the German Federal Ministry of Education and Research
(BMBF), FKZ: 16N11865.

REFERENCES

[1] A. Aljaafreh, N. Alshabatat, and M. Najim Al-Din, “Driving style
recognition using fuzzy logic,” in Vehicular Electronics and Safety
(ICVES), 2012 IEEE International Conference on, July 2012, pp.
460–463.

[2] O. Taubman-Ben-Ari, M. Mikulincer, and O. Gillath, “The
multidimensional driving style inventory - scale construct
and validation,” Accident Analysis & Prevention, vol. 36,
no. 3, pp. 323 – 332, 2004. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0001457503000101

[3] D.-I. B. Deml, D.-I. J. Freyer, and P. D. B. Faerber, “Ein beitrag zur
praediktion des fahrstils,” in VDI Berichte Nr. 2015. VDI, 2007.

[4] E. Donges, Handbuch Fahrerassistenzsysteme: Grundlagen, Kompo-
nenten und Systeme fuer aktive Sicherheit und Komfort. Springer
Berlin Heidelberg, 2009, ch. Fahrerverhaltensmodelle, pp. 15 – 23.

[5] T. Friedrich and P. Ziegler, “Verfahren zum anpassen eines
fahrerassistenzsystems an das fahrverhalten eines fahrers,” July 22
2010, dE Patent App. DE200,910,000,296. [Online]. Available:
http://www.google.com/patents/DE102009000296A1?cl=de

[6] D. Johnson and M. Trivedi, “Driving style recognition using a smart-
phone as a sensor platform,” in Intelligent Transportation Systems
(ITSC), 2011 14th International IEEE Conference on, Oct 2011, pp.
1609–1615.

[7] R. E. Kalman, “A new approach to linear filtering and prediction
problems,” Transactions of the ASME - Journal of Basic
Engineering, no. 82 (Series D), pp. 35–45, 1960. [Online]. Available:
http://www.cs.unc.edu/˜welch/kalman/media/pdf/Kalman1960.pdf

[8] M. V. Ly, S. Martin, and M. Trivedi, “Driver classification and
driving style recognition using inertial sensors,” in Intelligent Vehicles
Symposium (IV), 2013 IEEE, June 2013, pp. 1040–1045.

[9] M. Ploechl and J. Edelmann, “Driver models in au-
tomobile dynamics application,” Vehicle System Dynamics,
vol. 45, no. 7-8, pp. 699–741, 2007. [Online]. Available:
http://dx.doi.org/10.1080/00423110701432482

[10] L. A. Zadeh, “Fuzzy logic,” Computer, vol. 21, no. 4, pp. 83–93, 1988.
[11] H. Zimmermann, Fuzzy set theory and its applications. Kluwer
Academic, Dordrecht, 1985.


