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Abstract 

Recent developments in modern mobile machines like tractors introduce a large number of 

degrees of freedom for designers and engineers to optimize the system according to their 

individual goals. However, current machine management strategies generally use only a 

small part of the evolving potential, and the efficiency of machine operation is highly 

influenced by the individual skills of the operator. We present a novel approach to consider 

the mobile machinery as a whole and employ a holistic optimization to maximize efficiency. 

The optimized working point is the result of several on- and offline learning loops, which 

assign optimal actions to a set of possible situations. This is realized using an 

Observer/Controller-architecture.  

 

Starting Point 

Over the past decades, the development of mobile machines has been influenced by a rising 

amount of internal degrees of freedom [1]. As a consequence, mobile machines experience a 

rising complexity due to the higher amount of individual, cross-linked and communicating 

entities. Furthermore mobile machines and in particularly tractors execute a vast amount of 

different working cycles in varying environmental conditions.  

This background poses a tremendous challenge for machine control by an adequate 

management strategy. In a conventional strategy, an operator sets basic defaults which are 

given as inputs into static characteristic curves or arrays in order to find optimized command 

variables for single control loops for some predefined cases. Although there has been much 

improvement towards automation and optimization especially due to the adoption of 

extensive electronics, working results are determined particularly by the experience and the 

skills of the operator [2]. 



 

Goals 

Without loss of generality, we select a tractor as a representative for mobile machines to 

maximize efficiency by holistic optimization. Efficiency is defined as ratio of power outputs at 

pulling devices, PTO and working hydraulics to heating value of fuel consumption. A holistic 

optimization process must consider interacting machine devices, environmental influences as 

well as different working conditions and drivers. Therefore, in a holistic management 

strategy, the machine must be to regard as depicted in Figure 1.  

 

 

 

 

 

 

 

 

 

Figure 1: Tractor with external influences 

 

According to that, a tractor consists of an engine, working hydraulics, PTO and the drive 

chain with transmission, drive side and transmission controller. The operator sets basic 

adjustments like PTO gear (iPTO), crankshaft speed (nCrank), 4 wheel clutch (4w), gear (GR), 

differential clutch (DC), desired velocity (vdes) and overload speed (nOverload). The environment 

exchanges information about soil, vertical forces of single wheels (F1z-F4z) and steering angle 

(φSteer). The working cycle characterizes power flows of working hydraulics (PWH), pulling 

force of coupling devices (FPull) and PTO torque (TPTO). 

 

Novel Approach 

The main question when thinking about holistic optimization of a tractor management is: 

“How can we deal with so many complex and interacting devices and dependencies?” 

Complex interacting systems are widely spread in everyday’s life, e.g. traffic control, 

computer networks, electric power supply and automotive systems. A discipline that deals 

with the controllability of such self-organized systems is the field of Organic Computing [3]. 

Goal is to get a deeper understanding of the behavior of complex systems and develop 

design concepts to support an “organic” behavior that is characterized by so called self-X 

properties like e.g. self-organisation, self-optimisation, and the ability to learn. 



A concept designed in Organic Computing to provide life-like attributes is the generic 

Observer/Controller(O/C)- architecture according to Figure 2 [4].  

 

 

 

 

 

 

 

 

Figure 2:  Generic Observer/ Controller architecture 

 

This O/C-architecture is designed to holistically observe and optimize an underlying System 

under Observation and Control (SuOC) according to an externally given optimization goal. In 

this case, a Fendt Vario is to be optimized regarding its efficiency. The O/C-architecture 

observes the overall system and interacts only if a potential for improvement of the system is 

detected. In order to achieve this, the Observer characterizes the current system state, or 

situation, by evaluating sensor data from the SuOC. The system state is specified by the 

currently executed working cycle of the tractor and the environment according to Figure 1. 

The Observer aggregates all relevant data and reports it to the Controller. The Controller 

evaluates the system behaviour according to a given target function (system goal). Thereby 

the Controller learns adequate reactions for identified situation, so called action. The action is 

able to access all internal system parameters or degrees of freedom in the system. In 

conventional management strategies they are set by the operator according to Figure 1. 

Therefore, the current situation can be summarized to Sv
r

, the action to Av
r

. 

 

Current Work 

Currently, the tractor as SuOC is simulated by a model in AMESim according to Figure 3. 

Input into the AMESim model is the PowerMix of the German Agricultural Society (DLG), 

which describes the main working cycles a tractor performs. Output is efficiency. 

The clustering module in the Observer measures the situation vector Sv
r

 and over time 

clusters the incoming vectors into groups. Each cluster is interpreted as a different system 

state, for which an adequate action should be taken. It is identified by a cluster ID (cl_ID) and 

represented by a cluster center (cl_center). The clustering is done by a density based 

SuOC 



clustering algorithm. In each time step, the current cluster ID is reported to the mapping 

module within the Controller, where an adequate action optAv ,

r
 is assigned to each known 

cluster ID. This action will be sent as adjustment to the SuOC. If the cluster ID that has been 

reported by the Observer is yet unknown to the mapping, the offline learning cycle within the 

Controller is activated. Here, the adaptation module uses an evolutionary algorithm to 

generate candidate actions for the new situation, which are evaluated using an internal 

simulation model of the SuOC. It returnes for each candidate solution 'Av
r

 a simulated 

efficiency ( )'Av
rη  that is to be maximized. The best performing actions are sent back as 

( )IDclv optA _,

r
, which now enables the mapping to react to the new situation as soon as it 

arises again. 

To evaluate the rules in the mapping, an online learning loop complements the model based 

offline learning. Therefore, the efficiency ηreal of the SuOC is measured, and stored in a 

history. Every time the Controller executes an action optAv ,

r
, average efficiency realη  before 

and after the execution are compared, in case Sv
r

 stays constant. If system efficiency is 

higher after the execution, an evaluation value (ev) of the corresponding rule will be 

increased, or decreased if it is lower. Rules that repeatedly show a bad performance will 

eventually be deleted from the mapping and replaced by new ones. 

 

 

 

 

 

 

 

 

 

 

Figure 3:  Specific Observer/Controller layout 

 

Results 

The architecture described above was tested with PowerMix cycle Z5K - rotary harrow. 

Characteristic working cycle graphs of PTO torque and pulling force as well as results of the 

clustering module are illustrated in Figure 4. 



 

Figure 4: PowerMix cycle Z5K with indicated clusters  

 

For a stable situation (steady cl_ID) between 60s and 100s the optimization process will be 

demonstrated. Since there is no ( )IDclv optA _,

r
 in the mapping yet, the adaptation module 

generates new rules by means of an evolutionary algorithm over 100 generations and a 

population of 100 individuals. A comparison between efficiency of the original Av
r

 , and the 

newly learned ( )IDclv optA _,

r
 that is returned by the Controller’s internal model of the SuOC is 

shown in Table 1. It can be seen that within the Controller’s internal simulation model, the 

suggested new action leads to a considerable increase in system efficiency. 

 

Table 1: Comparison of original and suggested action 

 

 

Figure 5 shows the results of applying the new rule to the real SuOC (in our case the 

AMESim model). In this particular situation, the O/C architecture is able to increase efficiency 

by about 50%.  

However a optAv ,

r
 like this one is not practicable e.g. due to the high vdes. In the current 

version of the implementation, the focus lies exclusively on the optimization of the target 

function (maximization of efficiency), in order to show the potential of the architecture as a 

machine management system for mobile working machines. The consideration of restrictions 



for entries in optAv ,

r
, like, e.g. a minimum or maximum velocity, can be easily introduced by 

restricting the search space of the optimisation algorithm in the adaptation module 

accordingly. 

Additionally noticeable is the difference between calculated efficiency of the internal model in 

the controller ( )'Av
rη  and average efficiency realη  of the actual SuOC. Reason for that is most 

likely the steady state approach of the controller model.  

 

 

Figure 5: Real efficiencies of original and suggested action in Z5K 
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