Struktursimulation Endlosfaserverbunde

The deformation and damage behavior of continuous-fiber composite components is largely determined by the structure of the reinforcing fibers. Fiber orientation, fiber volume content, and local effects such as waviness and gapping can vary significantly as a result of the forming process. To consider this in the prediction of the structural mechanical behavior, we incorporate the process information provided by the CAE chain in the structural simulation. For this purpose, we develop material models that capture the nonlinear deformation behavior and the damage evolution in a failure mode-specific manner (fiber fracture, matrix fracture, delamination) as a function of the local fiber structure.

 

Research focus
  • Virtual validation of composite components
  • Consideration of manufacturing effects
  • Nonlinear material modeling
  • Failure analysis, damage evolution
  • Dynamic analysis: vibration, damping, impact
  • Multiscale simulation

 

 

Research projects
Contact

M.Sc. Constantin Krauß
Tel.: +49 721 608-45896
Email: constantin.krauss∂kit.edu

 

M.Sc. Alexander Jackstadt
Tel.: +49 721 608-45365
Email: alexander.jackstadt∂kit.edu

 

M.Sc. Felix Frölich
Tel.: +49 721 608-45361
Email: felix.froelich∂kit.edu

 

Dipl.-Ing. Clemens Zimmerling
Tel.: +49 721 608-45409
Email: clemens.zimmerling∂kit.edu

 

Dr.-Ing. Luise Kärger
Tel.: +49 721 608-45386
Email: luise.kaerger∂kit.edu

 

 

 

Bild FAST-LBT
Struktursimulation einer Stirnwand: Materialauslastung ohne (oben) und mit (unten) Berücksichtigung von Umformeffekten
Bild FAST-LBT
Mikrosimulation: Matrixschädigung bei vorliegender Faserwelligkeit

Selected publications in the research field


Wide Scale Characterization and Modeling of the Vibration and Damping Behavior of CFRP-Elastomer-Metal Laminates—Comparison and Discussion of Different Test Setups.
Sessner, V.; Liebig, W. V.; Jackstadt, A.; Schmid, D.; Ehrig, T.; Holeczek, K.; Gräbner, N.; Kostka, P.; von Wagner, U.; Weidenmann, K. A.; Kärger, L.
2021. Applied composite materials. doi:10.1007/s10443-021-09934-7
Extension of an analytical solution of a unified formulation to the frequency response of composite plates with viscoelastic layers.
Jackstadt, A.; Kärger, L.
2021. Proceedings in applied mathematics and mechanics, 20 (1), Art.-Nr.: e202000234. doi:10.1002/pamm.202000234
Crack characterization of discontinuous fiber-reinforced composites by using micro-computed tomography: Cyclic in-situ testing, crack segmentation and crack volume fraction.
Schöttl, L.; Kolb, P.; Liebig, W. V.; Weidenmann, K. A.; Inal, K.; Elsner, P.
2020. Composites communications, 21, Art. Nr.: 100384. doi:10.1016/j.coco.2020.100384
Application of a mixed variational higher order plate theory towards understanding the deformation behavior of hybrid laminates.
Jackstadt, A.; Liebig, W. V.; Sessner, V.; Weidenmann, K. A.; Kärger, L.
2019. Proceedings in applied mathematics and mechanics, 19 (1), e201900048. doi:10.1002/pamm.201900048
Experimental and Numerical Determination of the Local Fiber Volume Content of Unidirectional Non-Crimp Fabrics with Forming Effects.
Galkin, S.; Kunze, E.; Kärger, L.; Böhm, R.; Gude, M.
2019. Journal of composites science, 3 (1), Article: 19. doi:10.3390/jcs3010019
Frequency domain modelling of transversely isotropic viscoelastic fibre-reinforced plastics.
Liebig, W. V.; Jackstadt, A.; Sessner, V.; Weidenmann, K. A.; Kärger, L.
2019. Composites science and technology, 180, 101–110. doi:10.1016/j.compscitech.2019.04.019
Damping Characterization of Hybrid Carbon Fiber Elastomer Metal Laminates using Experimental and Numerical Dynamic Mechanical Analysis.
Sessner, V.; Jackstadt, A.; Liebig, W.; Kärger, L.; Weidenmann, K.
2019. Journal of composites science, 3 (1), 3. doi:10.3390/jcs3010003
Smart dispersion: Validation of OCT and impedance spectroscopy as solutions for in-situ dispersion analysis of CNP/EP-composites.
Meeuw, H.; Körbelin, J.; Bernstorff, D. von; Augustin, T.; Liebig, W. V.; Fiedler, B.
2018. Materialia, 1, 185–197. doi:10.1016/j.mtla.2018.06.002
Numerical and experimental investigations of the damping behaviour of hybrid CFRP-elastomer-metal laminates.
Liebig, W. V.; Sessner, V.; Weidenmann, K. A.; Kärger, L.
2018. Composite Structures, 202, 1109–1113. doi:10.1016/j.compstruct.2018.05.051
Comparison of analytical approaches predicting the compressive strength of fibre reinforced polymers.
Leopold, C.; Harder, S.; Philipkowski, T.; Liebig, W. V.; Fiedler, B.
2018. Materials, 10 (12), Art. Nr.: 2517. doi:10.3390/ma11122517
Forming optimisation embedded in a CAE chain to assess and enhance the structural performance of composite components.
Kärger, L.; Galkin, S.; Zimmerling, C.; Dörr, D.; Linden, J.; Oeckerath, A.; Wolf, K.
2018. Composite structures, 192, 143–152. doi:10.1016/j.compstruct.2018.02.041
Simplified phenomenological model of the nonlinear behavior of FRPs under combined stress states.
Galkin, S.; Schirmaier, F. J.; Kärger, L.
2018. Journal of composite materials, 52 (4), 475–485. doi:10.1177/0021998317709332
Compression fracture of CFRP laminates containing stress intensifications.
Leopold, C.; Schütt, M.; Liebig, W. V.; Philipkowski, T.; Kürten, J.; Schulte, K.; Fiedler, B.
2017. Materials, 10 (9), Art.Nr.: 1039. doi:10.3390/ma10091039
Influence of carbon nanoparticle modification on the mechanical and electrical properties of epoxy in small volumes.
Leopold, C.; Augustin, T.; Schwebler, T.; Lehmann, J.; Liebig, W. V.; Fiedler, B.
2017. Journal of colloid and interface science, 506, 620–632. doi:10.1016/j.jcis.2017.07.085
Experimental and numerical analysis of bolt-loaded open-hole laminates reinforced by winded carbon rovings.
Botzkowski, T.; Galkin, S.; Wagner, S.; Sikora, S. P.; Kärger, L.
2016. Composite structures, 141, 194–202. doi:10.1016/j.compstruct.2016.01.057
Development and validation of a CAE chain for unidirectional fibre reinforced composite components.
Kärger, L.; Bernath, A.; Fritz, F.; Galkin, S.; Magagnato, D.; Oeckerath, A.; Schön, A.; Henning, F.
2015. Composite structures, 132, 350–358. doi:10.1016/j.compstruct.2015.05.047